論文の概要: Survey of XAI in digital pathology
- arxiv url: http://arxiv.org/abs/2008.06353v1
- Date: Fri, 14 Aug 2020 13:11:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 17:10:11.884307
- Title: Survey of XAI in digital pathology
- Title(参考訳): デジタル病理学におけるXAI調査
- Authors: Milda Pocevi\v{c}i\=ut\.e and Gabriel Eilertsen and Claes Lundstr\"om
- Abstract要約: 本稿では,デジタル病理学におけるXAIについて,特定の特徴とニーズを持つ医用画像のサブディシプリタであるXAIについて紹介する。
病理画像診断における深層学習手法に関する現在のXAI技術の概要について概説する。
そこで我々は,XAIランドスケープの不可欠な部分として不確実性推定手法を取り入れた。
- 参考スコア(独自算出の注目度): 3.4591414173342643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has shown great promise for diagnostic imaging
assessments. However, the application of AI to support medical diagnostics in
clinical routine comes with many challenges. The algorithms should have high
prediction accuracy but also be transparent, understandable and reliable. Thus,
explainable artificial intelligence (XAI) is highly relevant for this domain.
We present a survey on XAI within digital pathology, a medical imaging
sub-discipline with particular characteristics and needs. The review includes
several contributions. Firstly, we give a thorough overview of current XAI
techniques of potential relevance for deep learning methods in pathology
imaging, and categorise them from three different aspects. In doing so, we
incorporate uncertainty estimation methods as an integral part of the XAI
landscape. We also connect the technical methods to the specific prerequisites
in digital pathology and present findings to guide future research efforts. The
survey is intended for both technical researchers and medical professionals,
one of the objectives being to establish a common ground for cross-disciplinary
discussions.
- Abstract(参考訳): 人工知能(AI)は、診断画像アセスメントに非常に有望である。
しかし、臨床ルーチンにおける医療診断支援のためのAIの適用には、多くの課題が伴う。
アルゴリズムは高い予測精度を持つが、透明で理解しやすく信頼性も高い。
したがって、この領域には説明可能な人工知能(XAI)が深く関係している。
本稿では,デジタル病理学におけるXAIについて,特定の特徴とニーズを持つ医用画像のサブディシプリネであるXAIについて紹介する。
レビューにはいくつかのコントリビューションが含まれている。
まず,病理画像学における深層学習手法に関する現在のXAI技術の概要を概説し,これらを3つの異なる側面から分類する。
そこで我々は,XAIランドスケープの不可欠な部分として不確実性推定手法を取り入れた。
また,デジタル病理学における特定の前提条件と技術手法を結びつけ,今後の研究の方向性を示す。
この調査は、技術研究者と医療専門家の両方を対象としており、分野横断的な議論の共通基盤を確立することを目的としている。
関連論文リスト
- Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
診断に医用画像を使用する場合,画像が高品質であることが重要である。
遠隔医療において一般的な問題は、患者が診療所を退院した後にのみ、品質問題が警告されることである。
本稿では,低品質な医用画像をリアルタイムにフラグ付け,説明するためのAIシステムの開発について報告する。
論文 参考訳(メタデータ) (2022-07-06T14:53:26Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Explainable artificial intelligence (XAI) in deep learning-based medical
image analysis [3.255042271092803]
深層学習に基づく医用画像解析手法を分類するために,XAI基準の枠組みを導入する。
医用画像解析におけるXAI技術に関する論文は、その枠組みや解剖学的位置に応じて調査され分類される。
医療画像解析におけるXAIの今後の可能性について考察した。
論文 参考訳(メタデータ) (2021-07-22T20:16:34Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
病理組織像 (HIs) は癌診断における腫瘍の種類を評価するための金の基準である。
このような分析を高速化する方法の1つは、コンピュータ支援診断(CAD)システムを使用することである。
論文 参考訳(メタデータ) (2021-02-07T19:12:32Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。