論文の概要: Explainable Artificial Intelligence for Medical Applications: A Review
- arxiv url: http://arxiv.org/abs/2412.01829v1
- Date: Fri, 15 Nov 2024 11:31:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 09:16:06.759178
- Title: Explainable Artificial Intelligence for Medical Applications: A Review
- Title(参考訳): 医療応用のための説明可能な人工知能
- Authors: Qiyang Sun, Alican Akman, Björn W. Schuller,
- Abstract要約: 本稿では、説明可能な人工知能(XAI)に関する最近の研究をレビューする。
視覚、オーディオ、マルチモーダルの観点からの医療実践に焦点を当てている。
我々は、将来の研究者や医療専門家に支援とガイダンスを提供することを目的として、これらのプラクティスを分類し、合成することに努めます。
- 参考スコア(独自算出の注目度): 42.33274794442013
- License:
- Abstract: The continuous development of artificial intelligence (AI) theory has propelled this field to unprecedented heights, owing to the relentless efforts of scholars and researchers. In the medical realm, AI takes a pivotal role, leveraging robust machine learning (ML) algorithms. AI technology in medical imaging aids physicians in X-ray, computed tomography (CT) scans, and magnetic resonance imaging (MRI) diagnoses, conducts pattern recognition and disease prediction based on acoustic data, delivers prognoses on disease types and developmental trends for patients, and employs intelligent health management wearable devices with human-computer interaction technology to name but a few. While these well-established applications have significantly assisted in medical field diagnoses, clinical decision-making, and management, collaboration between the medical and AI sectors faces an urgent challenge: How to substantiate the reliability of decision-making? The underlying issue stems from the conflict between the demand for accountability and result transparency in medical scenarios and the black-box model traits of AI. This article reviews recent research grounded in explainable artificial intelligence (XAI), with an emphasis on medical practices within the visual, audio, and multimodal perspectives. We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
- Abstract(参考訳): 人工知能(AI)理論の継続的な発展は、学者や研究者の絶え間ない努力により、この分野を前例のない高水準にまで押し上げた。
医療の世界では、堅牢な機械学習(ML)アルゴリズムを活用することで、AIが重要な役割を担います。
医療画像におけるAI技術は、X線、CTスキャン、MRIの診断、音響データに基づくパターン認識と疾患予測、疾患のタイプと発達トレンドの診断、人-コンピュータインタラクション技術を備えたインテリジェントヘルス管理ウェアラブルデバイスを使用する。
これらの確立されたアプリケーションは、医学分野の診断、臨床意思決定、管理に大いに役立っているが、医療とAIセクター間のコラボレーションは、緊急の課題に直面している。
根底にある問題は、説明責任の要求と、医療シナリオにおける透明性と、AIのブラックボックスモデルの特徴との間の対立に起因している。
本稿では、視覚、オーディオ、マルチモーダルの観点からの医療実践を重視した、説明可能な人工知能(XAI)に基づく最近の研究をレビューする。
我々は、将来の研究者や医療専門家に支援とガイダンスを提供することを目的として、これらのプラクティスを分類し、合成することに努めます。
関連論文リスト
- Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
本稿では、医用画像における生成AIの変換可能性について考察し、合成ACM-2データを生成する能力を強調した。
データセットのサイズと多様性の制限に対処することにより、これらのモデルはより正確な診断と患者の結果の改善に寄与する。
論文 参考訳(メタデータ) (2024-03-26T09:55:49Z) - Explainable AI applications in the Medical Domain: a systematic review [1.4419517737536707]
医療AIの分野は、ユーザー信頼の構築、規制の遵守、倫理的にデータの利用など、さまざまな課題に直面している。
本稿では,近年発行されている198記事の代表的サンプルをもとに,XAIソリューションの医療意思決定支援への展開に関する文献的考察を行う。
論文 参考訳(メタデータ) (2023-08-10T08:12:17Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
本報告は, MonAIコンソーシアムの業界専門家と臨床医のグループによる, 週ごとの議論と問題解決経験について述べる。
実験室におけるAIモデル開発とその後の臨床展開の障壁を明らかにする。
臨床放射線学ワークフローにおける様々なAI統合ポイントについて論じる。
論文 参考訳(メタデータ) (2022-12-29T05:17:59Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
世界保健機関(WHO)は、SARS-CoV-2ウイルスによる新型コロナウイルスの感染をパンデミックと宣言した。
我々は、機械学習と、より広範に、人工知能を用いた最近の研究の概要を、新型コロナウイルス危機の多くの側面に取り組むために提示する。
論文 参考訳(メタデータ) (2020-03-25T12:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。