論文の概要: A Survey of Explainable Reinforcement Learning: Targets, Methods and Needs
- arxiv url: http://arxiv.org/abs/2507.12599v1
- Date: Wed, 16 Jul 2025 19:41:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.256989
- Title: A Survey of Explainable Reinforcement Learning: Targets, Methods and Needs
- Title(参考訳): 説明可能な強化学習 : 目標,方法,ニーズ
- Authors: Léo Saulières,
- Abstract要約: 本稿では,eXplainable Reinforcement Learning (XRL)と呼ばれる,XAIのサブドメインに焦点を当てる。
XRLは、強化学習によって学んだエージェントの作用を説明することを目的としている。
我々は「なに」と「どう」の2つの質問に基づく直感的な分類法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of recent Artificial Intelligence (AI) models has been accompanied by the opacity of their internal mechanisms, due notably to the use of deep neural networks. In order to understand these internal mechanisms and explain the output of these AI models, a set of methods have been proposed, grouped under the domain of eXplainable AI (XAI). This paper focuses on a sub-domain of XAI, called eXplainable Reinforcement Learning (XRL), which aims to explain the actions of an agent that has learned by reinforcement learning. We propose an intuitive taxonomy based on two questions "What" and "How". The first question focuses on the target that the method explains, while the second relates to the way the explanation is provided. We use this taxonomy to provide a state-of-the-art review of over 250 papers. In addition, we present a set of domains close to XRL, which we believe should get attention from the community. Finally, we identify some needs for the field of XRL.
- Abstract(参考訳): 最近の人工知能(AI)モデルの成功には、特にディープニューラルネットワークの使用による内部メカニズムの不透明さが伴っている。
これらの内部メカニズムを理解し、これらのAIモデルの出力を説明するために、eXplainable AI(XAI)のドメインの下でグループ化された一連の手法が提案されている。
本稿では,強化学習によって学習したエージェントの動作を説明することを目的とした,XAIのサブドメインであるeXplainable Reinforcement Learning(XRL)に焦点を当てる。
そこで我々は,「何を」と「どのように」という2つの質問に基づいて直感的な分類法を提案する。
第1の質問は、メソッドが説明するターゲットに焦点を当て、第2の質問は、説明を提供する方法に関連している。
我々はこの分類学を用いて250以上の論文の最先端のレビューを行う。
さらに、私たちはXRLに近い一連のドメインを示し、コミュニティから注目を集めるべきであると考えています。
最後に、XRL の分野に対するいくつかのニーズを特定する。
関連論文リスト
- Explainable Artificial Intelligence and Multicollinearity : A Mini Review of Current Approaches [0.0]
説明可能な人工知能(XAI)手法は、機械学習モデルの内部メカニズムを理解するのに役立つ。
情報的特徴のリストは、XAIメソッドの最も一般的な出力の1つである。
マルチコリニアリティは、XAIが説明を生成するときに考慮すべき大きな問題の1つです。
論文 参考訳(メタデータ) (2024-06-17T13:26:53Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
ブラックボックスAIモデルの急増は、内部メカニズムを説明し、信頼性を正当化する必要性を喚起している。
勾配に基づく説明は、ニューラルネットワークモデルに直接適用することができる。
アルゴリズムの性能を測定するために,人的評価と定量的評価の両方を導入する。
論文 参考訳(メタデータ) (2024-03-15T15:49:31Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
本研究は、説明可能な機械学習(XML)における既存の研究の徹底的なレビューを行う。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供することです。
本稿では,ユーザとその所望のプロパティを考慮に入れたマッピング関数を提案し,XAI手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T01:06:38Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。
単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。
本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
論文 参考訳(メタデータ) (2021-09-03T09:46:20Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Explainable Reinforcement Learning: A Survey [0.0]
説明可能な人工知能(XAI)はここ数年で勢いを増している。
XAIモデルには1つの有害な特徴がある。
本調査は、説明可能な強化学習(XRL)手法の概要を提供することで、このギャップに対処しようとするものである。
論文 参考訳(メタデータ) (2020-05-13T10:52:49Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。