Interpretable Representations in Explainable AI: From Theory to Practice
- URL: http://arxiv.org/abs/2008.07007v4
- Date: Fri, 26 Apr 2024 09:22:34 GMT
- Title: Interpretable Representations in Explainable AI: From Theory to Practice
- Authors: Kacper Sokol, Peter Flach,
- Abstract summary: Interpretable representations are the backbone of many explainers that target black-box predictive systems.
We study properties of interpretable representations that encode presence and absence of human-comprehensible concepts.
- Score: 7.031336702345381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretable representations are the backbone of many explainers that target black-box predictive systems based on artificial intelligence and machine learning algorithms. They translate the low-level data representation necessary for good predictive performance into high-level human-intelligible concepts used to convey the explanatory insights. Notably, the explanation type and its cognitive complexity are directly controlled by the interpretable representation, tweaking which allows to target a particular audience and use case. However, many explainers built upon interpretable representations overlook their merit and fall back on default solutions that often carry implicit assumptions, thereby degrading the explanatory power and reliability of such techniques. To address this problem, we study properties of interpretable representations that encode presence and absence of human-comprehensible concepts. We demonstrate how they are operationalised for tabular, image and text data; discuss their assumptions, strengths and weaknesses; identify their core building blocks; and scrutinise their configuration and parameterisation. In particular, this in-depth analysis allows us to pinpoint their explanatory properties, desiderata and scope for (malicious) manipulation in the context of tabular data where a linear model is used to quantify the influence of interpretable concepts on a black-box prediction. Our findings lead to a range of recommendations for designing trustworthy interpretable representations; specifically, the benefits of class-aware (supervised) discretisation of tabular data, e.g., with decision trees, and sensitivity of image interpretable representations to segmentation granularity and occlusion colour.
Related papers
- InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
Interpretability for neural networks is a trade-off between three key requirements.
We present InterpretCC, a family of interpretable-by-design neural networks that guarantee human-centric interpretability.
arXiv Detail & Related papers (2024-02-05T11:55:50Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - (Un)reasonable Allure of Ante-hoc Interpretability for High-stakes
Domains: Transparency Is Necessary but Insufficient for Comprehensibility [25.542848590851758]
Ante-hoc interpretability has become the holy grail of explainable artificial intelligence for high-stakes domains such as healthcare.
It can refer to predictive models whose structure adheres to domain-specific constraints, or ones that are inherently transparent.
We unpack this concept to better understand what is needed for its safe adoption across high-stakes domains.
arXiv Detail & Related papers (2023-06-04T09:34:41Z) - ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and
score-based eXplanations [26.500149465292246]
This paper proposes a generic approach named ASTERYX allowing to generate both symbolic explanations and score-based ones.
Our experimental results show the feasibility of the proposed approach and its effectiveness in providing symbolic and score-based explanations.
arXiv Detail & Related papers (2022-06-23T08:37:32Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Desiderata for Representation Learning: A Causal Perspective [104.3711759578494]
We take a causal perspective on representation learning, formalizing non-spuriousness and efficiency (in supervised representation learning) and disentanglement (in unsupervised representation learning)
This yields computable metrics that can be used to assess the degree to which representations satisfy the desiderata of interest and learn non-spurious and disentangled representations from single observational datasets.
arXiv Detail & Related papers (2021-09-08T17:33:54Z) - Interpretable Deep Learning: Interpretations, Interpretability,
Trustworthiness, and Beyond [49.93153180169685]
We introduce and clarify two basic concepts-interpretations and interpretability-that people usually get confused.
We elaborate the design of several recent interpretation algorithms, from different perspectives, through proposing a new taxonomy.
We summarize the existing work in evaluating models' interpretability using "trustworthy" interpretation algorithms.
arXiv Detail & Related papers (2021-03-19T08:40:30Z) - Explainers in the Wild: Making Surrogate Explainers Robust to
Distortions through Perception [77.34726150561087]
We propose a methodology to evaluate the effect of distortions in explanations by embedding perceptual distances.
We generate explanations for images in the Imagenet-C dataset and demonstrate how using a perceptual distances in the surrogate explainer creates more coherent explanations for the distorted and reference images.
arXiv Detail & Related papers (2021-02-22T12:38:53Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Explanations of Black-Box Model Predictions by Contextual Importance and
Utility [1.7188280334580195]
We present the Contextual Importance (CI) and Contextual Utility (CU) concepts to extract explanations easily understandable by experts as well as novice users.
This method explains the prediction results without transforming the model into an interpretable one.
We show the utility of explanations in car selection example and Iris flower classification by presenting complete (i.e. the causes of an individual prediction) and contrastive explanation.
arXiv Detail & Related papers (2020-05-30T06:49:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.