SHAP-based Explanations are Sensitive to Feature Representation
- URL: http://arxiv.org/abs/2505.08345v1
- Date: Tue, 13 May 2025 08:43:09 GMT
- Title: SHAP-based Explanations are Sensitive to Feature Representation
- Authors: Hyunseung Hwang, Andrew Bell, Joao Fonseca, Venetia Pliatsika, Julia Stoyanovich, Steven Euijong Whang,
- Abstract summary: Local feature-based explanations are a key component of the XAI toolkit.<n>This paper examines the impact of data engineering choices on local feature-based explanations.
- Score: 14.9044133052062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local feature-based explanations are a key component of the XAI toolkit. These explanations compute feature importance values relative to an ``interpretable'' feature representation. In tabular data, feature values themselves are often considered interpretable. This paper examines the impact of data engineering choices on local feature-based explanations. We demonstrate that simple, common data engineering techniques, such as representing age with a histogram or encoding race in a specific way, can manipulate feature importance as determined by popular methods like SHAP. Notably, the sensitivity of explanations to feature representation can be exploited by adversaries to obscure issues like discrimination. While the intuition behind these results is straightforward, their systematic exploration has been lacking. Previous work has focused on adversarial attacks on feature-based explainers by biasing data or manipulating models. To the best of our knowledge, this is the first study demonstrating that explainers can be misled by standard, seemingly innocuous data engineering techniques.
Related papers
- Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Supervised Feature Compression based on Counterfactual Analysis [3.2458225810390284]
This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model.
Using the discretized dataset, an optimal Decision Tree can be trained that resembles the black-box model, but that is interpretable and compact.
arXiv Detail & Related papers (2022-11-17T21:16:14Z) - Fair Interpretable Learning via Correction Vectors [68.29997072804537]
We propose a new framework for fair representation learning centered around the learning of "correction vectors"
The corrections are then simply summed up to the original features, and can therefore be analyzed as an explicit penalty or bonus to each feature.
We show experimentally that a fair representation learning problem constrained in such a way does not impact performance.
arXiv Detail & Related papers (2022-01-17T10:59:33Z) - Interpretable Data-Based Explanations for Fairness Debugging [7.266116143672294]
Gopher is a system that produces compact, interpretable, and causal explanations for bias or unexpected model behavior.
We introduce the concept of causal responsibility that quantifies the extent to which intervening on training data by removing or updating subsets of it can resolve the bias.
Building on this concept, we develop an efficient approach for generating the top-k patterns that explain model bias.
arXiv Detail & Related papers (2021-12-17T20:10:00Z) - A Practical Tutorial on Explainable AI Techniques [5.671062637797752]
This tutorial is meant to be the go-to handbook for any audience with a computer science background.
It aims at getting intuitive insights of machine learning models, accompanied with straight, fast, and intuitive explanations out of the box.
arXiv Detail & Related papers (2021-11-13T17:47:31Z) - Interpretable Representations in Explainable AI: From Theory to Practice [7.031336702345381]
Interpretable representations are the backbone of many explainers that target black-box predictive systems.
We study properties of interpretable representations that encode presence and absence of human-comprehensible concepts.
arXiv Detail & Related papers (2020-08-16T21:44:03Z) - Predicting What You Already Know Helps: Provable Self-Supervised
Learning [60.27658820909876]
Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data.
We show a mechanism exploiting the statistical connections between certain em reconstruction-based pretext tasks that guarantee to learn a good representation.
We prove the linear layer yields small approximation error even for complex ground truth function class.
arXiv Detail & Related papers (2020-08-03T17:56:13Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
Influence functions explain the decisions of a model by identifying influential training examples.
We conduct a comparison between influence functions and common word-saliency methods on representative tasks.
We develop a new measure based on influence functions that can reveal artifacts in training data.
arXiv Detail & Related papers (2020-05-14T00:45:23Z) - Explainable AI for Classification using Probabilistic Logic Inference [9.656846523452502]
We present an explainable classification method.
Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming.
It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the artley Value based method.
arXiv Detail & Related papers (2020-05-05T11:39:23Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.