Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints
- URL: http://arxiv.org/abs/2008.07029v2
- Date: Tue, 1 Sep 2020 04:53:56 GMT
- Title: Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints
- Authors: Syrine Belakaria, Aryan Deshwal, Janardhan Rao Doppa
- Abstract summary: We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints.
We show that USeMOC is able to achieve more than 90 % reduction in the number of simulations needed to uncover optimized circuits.
- Score: 44.25245545568633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of constrained multi-objective (MO) blackbox
optimization using expensive function evaluations, where the goal is to
approximate the true Pareto set of solutions satisfying a set of constraints
while minimizing the number of function evaluations. We propose a novel
framework named Uncertainty-aware Search framework for Multi-Objective
Optimization with Constraints (USeMOC) to efficiently select the sequence of
inputs for evaluation to solve this problem. The selection method of USeMOC
consists of solving a cheap constrained MO optimization problem via surrogate
models of the true functions to identify the most promising candidates and
picking the best candidate based on a measure of uncertainty. We applied this
framework to optimize the design of a multi-output switched-capacitor voltage
regulator via expensive simulations. Our experimental results show that USeMOC
is able to achieve more than 90 % reduction in the number of simulations needed
to uncover optimized circuits.
Related papers
- An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Max-value Entropy Search for Multi-Objective Bayesian Optimization with
Constraints [44.25245545568633]
In aviation power system design applications, we need to find the designs that trade-off total energy and the mass while satisfying specific thresholds for motor temperature and voltage of cells.
We propose a new approach referred as em Max-value Entropy Search for Multi-objective Optimization with Constraints (MESMOC) to solve this problem.
MESMOC employs an output-space entropy based acquisition function to efficiently select the sequence of inputs for evaluation to uncover high-quality pareto-set solutions.
arXiv Detail & Related papers (2020-09-01T05:00:01Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.