A quantum circuit simulator and its applications on Sunway TaihuLight
supercomputer
- URL: http://arxiv.org/abs/2008.07140v1
- Date: Mon, 17 Aug 2020 08:05:46 GMT
- Title: A quantum circuit simulator and its applications on Sunway TaihuLight
supercomputer
- Authors: Zhimin Wang, Zhaoyun Chen, Shengbin Wang, Wendong Li, Yongjian Gu,
Guoping Guo, Zhiqiang Wei
- Abstract summary: We present a new quantum circuit simulator developed on the Sunway TaihuLight supercomputer.
The simulator consists of three mutually independent parts to compute the full, partial and single amplitudes of a quantum state.
It has the function of emulating the effect of noise and support more kinds of quantum operations.
- Score: 15.433480039677798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical simulation of quantum computation is vital for verifying quantum
devices and assessing quantum algorithms. We present a new quantum circuit
simulator developed on the Sunway TaihuLight supercomputer. Compared with other
simulators, the present one is distinguished in two aspects. First, our
simulator is more versatile. The simulator consists of three mutually
independent parts to compute the full, partial and single amplitudes of a
quantum state with different methods. It has the function of emulating the
effect of noise and support more kinds of quantum operations. Second, our
simulator is of high efficiency. The simulator is designed in a two-level
parallel structure to be implemented efficiently on the distributed many-core
Sunway TaihuLight supercomputer. Random quantum circuits can be simulated with
40, 75 and 200 qubits on the full, partial and single amplitude, respectively.
As illustrative applications of the simulator, we present a quantum fast
Poisson solver and an algorithm for quantum arithmetic of evaluating
transcendental functions. Our simulator is expected to have broader
applications in developing quantum algorithms in various fields.
Related papers
- Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Exact and approximate simulation of large quantum circuits on a single
GPU [0.46603287532620735]
We report competitive execution times for the exact simulation of Fourier transform circuits with up to 27 qubits.
We also demonstrate the approximate simulation of all amplitudes of random circuits acting on 54 qubits with 7 layers at average fidelity higher than $4%$.
arXiv Detail & Related papers (2023-04-28T16:45:28Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - A Reorder Trick for Decision Diagram Based Quantum Circuit Simulation [0.4358626952482686]
We study two classes of quantum circuits on which the state-of-the-art decision diagram based simulators failed to perform well in terms of simulation time.
We propose a simple and powerful reorder trick to boost the simulation of such quantum circuits.
arXiv Detail & Related papers (2022-11-14T04:55:25Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - Simulations of Quantum Circuits with Approximate Noise using qsim and
Cirq [0.5701739554814172]
We introduce multinode quantum trajectory simulations with qsim, an open source high performance simulator of quantum circuits.
We present a novel delayed inner product algorithm for quantum trajectories which can result in an order of magnitude speedup for low noise simulation.
arXiv Detail & Related papers (2021-11-03T17:59:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Faster Schr\"odinger-style simulation of quantum circuits [2.0940228639403156]
Recent demonstrations of superconducting quantum computers by Google and IBM fueled new research in quantum algorithms.
We advance Schr"odinger-style simulation of quantum circuits that is useful standalone and as a building block in layered simulation algorithms.
arXiv Detail & Related papers (2020-08-01T08:47:24Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.