論文の概要: Automatic Identification and Visualization of Group Training Activities Using Wearable Data
- arxiv url: http://arxiv.org/abs/2410.05452v1
- Date: Mon, 7 Oct 2024 19:35:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:37:46.437607
- Title: Automatic Identification and Visualization of Group Training Activities Using Wearable Data
- Title(参考訳): ウェアラブルデータを用いたグループ学習活動の自動識別と可視化
- Authors: Barak Gahtan, Shany Funk, Einat Kodesh, Itay Ketko, Tsvi Kuflik, Alex M. Bronstein,
- Abstract要約: Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
本稿では,ウェアラブルデータからアクティビティを計算,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
- 参考スコア(独自算出の注目度): 7.130450173185638
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human Activity Recognition (HAR) identifies daily activities from time-series data collected by wearable devices like smartwatches. Recent advancements in Internet of Things (IoT), cloud computing, and low-cost sensors have broadened HAR applications across fields like healthcare, biometrics, sports, and personal fitness. However, challenges remain in efficiently processing the vast amounts of data generated by these devices and developing models that can accurately recognize a wide range of activities from continuous recordings, without relying on predefined activity training sessions. This paper presents a comprehensive framework for imputing, analyzing, and identifying activities from wearable data, specifically targeting group training scenarios without explicit activity sessions. Our approach is based on data collected from 135 soldiers wearing Garmin 55 smartwatches over six months. The framework integrates multiple data streams, handles missing data through cross-domain statistical methods, and identifies activities with high accuracy using machine learning (ML). Additionally, we utilized statistical analysis techniques to evaluate the performance of each individual within the group, providing valuable insights into their respective positions in the group in an easy-to-understand visualization. These visualizations facilitate easy understanding of performance metrics, enhancing group interactions and informing individualized training programs. We evaluate our framework through traditional train-test splits and out-of-sample scenarios, focusing on the model's generalization capabilities. Additionally, we address sleep data imputation without relying on ML, improving recovery analysis. Our findings demonstrate the potential of wearable data for accurately identifying group activities, paving the way for intelligent, data-driven training solutions.
- Abstract(参考訳): Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
モノのインターネット(IoT)、クラウドコンピューティング、低コストセンサーの最近の進歩は、医療、バイオメトリックス、スポーツ、パーソナルフィットネスといった分野にまたがってHARアプリケーションを拡大している。
しかし、これらのデバイスが生成する膨大なデータを効率的に処理し、事前定義されたアクティビティトレーニングセッションに頼ることなく、継続的な記録から幅広いアクティビティを正確に認識できるモデルを開発することは、依然として課題である。
本稿では,ウェアラブルデータからアクティビティを抽出,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
このフレームワークは複数のデータストリームを統合し、クロスドメインな統計手法を通じて欠落したデータを処理し、機械学習(ML)を使用して高精度なアクティビティを識別する。
さらに、統計的分析手法を用いて、グループ内の各個人のパフォーマンスを評価し、グループ内のそれぞれの位置に関する貴重な洞察を、理解し易い可視化で提供する。
これらの視覚化は、パフォーマンスメトリクスの理解を容易にし、グループ間の相互作用を強化し、個別のトレーニングプログラムを通知する。
従来のトレイン・スプリットとアウト・オブ・サンプルシナリオを通じてフレームワークを評価し,モデルの一般化機能に注目した。
さらに、MLに頼ることなく、睡眠データ計算に対処し、回復分析を改善した。
本研究は,グループ活動の正確な識別と,インテリジェントでデータ駆動型トレーニングソリューションへの道を開くためのウェアラブルデータの可能性を示すものである。
関連論文リスト
- Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
センサデータから人間の活動を認識するための弱自己教師型アプローチについて述べる。
提案手法は, クラスタリングアルゴリズムが, 基礎となる人間の行動を特定し, 分類する上で, 同等のパフォーマンスを達成するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-07-29T06:29:21Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
本稿では,HARデータセットを有効な転送学習に利用するための経済的なアプローチを提案する。
本稿では,教師が学習する自己学習パラダイムに則って,新たな伝達学習フレームワークであるクロスドメインHARを紹介する。
本手法の有効性を,撮影活動認識のシナリオで実証する。
論文 参考訳(メタデータ) (2023-10-22T19:13:25Z) - Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables [2.398608007786179]
本稿では,データを複数の表現空間にマッピングする方法を学習する,弱教師付きマルチ出力シムネットワークを提案する。
データサンプルの表現は、そのアスペクトで同じ意味を持つデータが互いに密接な位置にあるような空間に配置される。
論文 参考訳(メタデータ) (2023-08-06T08:20:07Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
日常生活活動の指標 (ADL) は, 健康の指標として重要であるが, 生体内測定は困難である。
本稿では,加速度センサデータの頑健な表現をデバイスや対象に対して一般化するための自己教師付き学習パラダイムを提案する。
また,連続した実生活データに対して,有意な活動のセグメントを同定し,HARの精度を高めるセグメンテーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T23:35:20Z) - Generative Conversational Networks [67.13144697969501]
本稿では,対話エージェントが独自のラベル付き学習データを生成することを学習する,生成会話ネットワーク(Generative Conversational Networks)というフレームワークを提案する。
そこで本研究では,シードデータから学習したベースラインモデルに対して,意図検出が平均35%,スロットタグが平均21%向上したことを示す。
論文 参考訳(メタデータ) (2021-06-15T23:19:37Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Social Adaptive Module for Weakly-supervised Group Activity Recognition [143.68241396839062]
本稿では、弱教師付きグループ活動認識(GAR)と呼ばれる新しいタスクを提案する。
従来のGARタスクとは違い、ビデオレベルラベルのみが利用可能であるが、トレーニングデータにおいても、各フレーム内の重要人物は提供されない。
これにより、大規模なNBAデータセットの収集とアノテートが容易になり、GARに新たな課題が生まれます。
論文 参考訳(メタデータ) (2020-07-18T16:40:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。