論文の概要: Automatic Identification and Visualization of Group Training Activities Using Wearable Data
- arxiv url: http://arxiv.org/abs/2410.05452v1
- Date: Mon, 7 Oct 2024 19:35:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 18:37:46.437607
- Title: Automatic Identification and Visualization of Group Training Activities Using Wearable Data
- Title(参考訳): ウェアラブルデータを用いたグループ学習活動の自動識別と可視化
- Authors: Barak Gahtan, Shany Funk, Einat Kodesh, Itay Ketko, Tsvi Kuflik, Alex M. Bronstein,
- Abstract要約: Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
本稿では,ウェアラブルデータからアクティビティを計算,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
- 参考スコア(独自算出の注目度): 7.130450173185638
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human Activity Recognition (HAR) identifies daily activities from time-series data collected by wearable devices like smartwatches. Recent advancements in Internet of Things (IoT), cloud computing, and low-cost sensors have broadened HAR applications across fields like healthcare, biometrics, sports, and personal fitness. However, challenges remain in efficiently processing the vast amounts of data generated by these devices and developing models that can accurately recognize a wide range of activities from continuous recordings, without relying on predefined activity training sessions. This paper presents a comprehensive framework for imputing, analyzing, and identifying activities from wearable data, specifically targeting group training scenarios without explicit activity sessions. Our approach is based on data collected from 135 soldiers wearing Garmin 55 smartwatches over six months. The framework integrates multiple data streams, handles missing data through cross-domain statistical methods, and identifies activities with high accuracy using machine learning (ML). Additionally, we utilized statistical analysis techniques to evaluate the performance of each individual within the group, providing valuable insights into their respective positions in the group in an easy-to-understand visualization. These visualizations facilitate easy understanding of performance metrics, enhancing group interactions and informing individualized training programs. We evaluate our framework through traditional train-test splits and out-of-sample scenarios, focusing on the model's generalization capabilities. Additionally, we address sleep data imputation without relying on ML, improving recovery analysis. Our findings demonstrate the potential of wearable data for accurately identifying group activities, paving the way for intelligent, data-driven training solutions.
- Abstract(参考訳): Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
モノのインターネット(IoT)、クラウドコンピューティング、低コストセンサーの最近の進歩は、医療、バイオメトリックス、スポーツ、パーソナルフィットネスといった分野にまたがってHARアプリケーションを拡大している。
しかし、これらのデバイスが生成する膨大なデータを効率的に処理し、事前定義されたアクティビティトレーニングセッションに頼ることなく、継続的な記録から幅広いアクティビティを正確に認識できるモデルを開発することは、依然として課題である。
本稿では,ウェアラブルデータからアクティビティを抽出,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
このフレームワークは複数のデータストリームを統合し、クロスドメインな統計手法を通じて欠落したデータを処理し、機械学習(ML)を使用して高精度なアクティビティを識別する。
さらに、統計的分析手法を用いて、グループ内の各個人のパフォーマンスを評価し、グループ内のそれぞれの位置に関する貴重な洞察を、理解し易い可視化で提供する。
これらの視覚化は、パフォーマンスメトリクスの理解を容易にし、グループ間の相互作用を強化し、個別のトレーニングプログラムを通知する。
従来のトレイン・スプリットとアウト・オブ・サンプルシナリオを通じてフレームワークを評価し,モデルの一般化機能に注目した。
さらに、MLに頼ることなく、睡眠データ計算に対処し、回復分析を改善した。
本研究は,グループ活動の正確な識別と,インテリジェントでデータ駆動型トレーニングソリューションへの道を開くためのウェアラブルデータの可能性を示すものである。
関連論文リスト
- Intelligent Repetition Counting for Unseen Exercises: A Few-Shot Learning Approach with Sensor Signals [0.4998632546280975]
本研究は、IMU信号の解析により、運動繰り返しを自動カウントする方法を開発した。
本稿では,深度測定に基づく数点学習手法を用いた反復カウント手法を提案する。
86.8%の確率で、28回の異なるエクササイズで1セットに10回以上の繰り返しを正確に数えることが可能である。
論文 参考訳(メタデータ) (2024-10-01T05:04:40Z) - Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
センサデータから人間の活動を認識するための弱自己教師型アプローチについて述べる。
提案手法は, クラスタリングアルゴリズムが, 基礎となる人間の行動を特定し, 分類する上で, 同等のパフォーマンスを達成するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-07-29T06:29:21Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
既存のモニタリングアプローチは、医療機器が複数の健康指標を同時に追跡するという前提で設計されている。
これは、その範囲内で関連するすべての健康値を報告し、過剰なリソース使用と外部データの収集をもたらす可能性があることを意味します。
最適なモニタリング性能とコスト効率のバランスをとるための動的アクティビティ・アウェアヘルスモニタリング戦略(DActAHM)を提案する。
論文 参考訳(メタデータ) (2024-01-19T16:26:35Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
本稿では,HARデータセットを有効な転送学習に利用するための経済的なアプローチを提案する。
本稿では,教師が学習する自己学習パラダイムに則って,新たな伝達学習フレームワークであるクロスドメインHARを紹介する。
本手法の有効性を,撮影活動認識のシナリオで実証する。
論文 参考訳(メタデータ) (2023-10-22T19:13:25Z) - Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables [2.398608007786179]
本稿では,データを複数の表現空間にマッピングする方法を学習する,弱教師付きマルチ出力シムネットワークを提案する。
データサンプルの表現は、そのアスペクトで同じ意味を持つデータが互いに密接な位置にあるような空間に配置される。
論文 参考訳(メタデータ) (2023-08-06T08:20:07Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Enabling hand gesture customization on wrist-worn devices [28.583516259577486]
既存のジェスチャーセットの性能を劣化させることなく、ユーザから最小限のサンプルを必要とするジェスチャーカスタマイズのためのフレームワークを提案する。
われわれのアプローチは、ユーザーが既存のジェスチャーに縛られない未来への道を切り拓き、自分の好みや能力に合わせた新しいジェスチャーを創造的に導入することを可能にする。
論文 参考訳(メタデータ) (2022-03-29T05:12:32Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
日常生活活動の指標 (ADL) は, 健康の指標として重要であるが, 生体内測定は困難である。
本稿では,加速度センサデータの頑健な表現をデバイスや対象に対して一般化するための自己教師付き学習パラダイムを提案する。
また,連続した実生活データに対して,有意な活動のセグメントを同定し,HARの精度を高めるセグメンテーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T23:35:20Z) - Self-supervised Pretraining with Classification Labels for Temporal
Activity Detection [54.366236719520565]
時間的アクティビティ検出は、1フレーム当たりのアクティビティクラスを予測することを目的としている。
検出に必要なフレームレベルのアノテーションが高価なため、検出データセットの規模は限られている。
本研究では,分類ラベルを利用した自己教師付き事前学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T18:59:28Z) - Crop-Transform-Paste: Self-Supervised Learning for Visual Tracking [137.26381337333552]
本研究では,十分なトレーニングデータを合成できるCrop-Transform-Paste演算を開発した。
オブジェクトの状態はすべての合成データで知られているので、既存のディープトラッカーは人間のアノテーションなしで日常的に訓練することができる。
論文 参考訳(メタデータ) (2021-06-21T07:40:34Z) - Generative Conversational Networks [67.13144697969501]
本稿では,対話エージェントが独自のラベル付き学習データを生成することを学習する,生成会話ネットワーク(Generative Conversational Networks)というフレームワークを提案する。
そこで本研究では,シードデータから学習したベースラインモデルに対して,意図検出が平均35%,スロットタグが平均21%向上したことを示す。
論文 参考訳(メタデータ) (2021-06-15T23:19:37Z) - Eye Know You: Metric Learning for End-to-end Biometric Authentication
Using Eye Movements from a Longitudinal Dataset [4.511561231517167]
本稿では,ユーザの眼球運動を認証するための畳み込みニューラルネットワークを提案する。
ネットワークは、確立されたメトリック学習損失関数、多相性損失で訓練される。
目の動きは、3年後のテンプレートの老化に対して非常に弾力性があります。
論文 参考訳(メタデータ) (2021-04-21T12:21:28Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z) - Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers [0.0]
モノのインターネット(IOT)に組み込まれたウェアラブルセンサーデバイスによる人間の活動認識(HAR)は、リモートヘルス監視と緊急通知に重要な役割を果たします。
本研究では、医療に適用可能な意思決定精度と実行速度の人間活動認識手法について検討する。
論文 参考訳(メタデータ) (2021-03-02T16:50:52Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Social Adaptive Module for Weakly-supervised Group Activity Recognition [143.68241396839062]
本稿では、弱教師付きグループ活動認識(GAR)と呼ばれる新しいタスクを提案する。
従来のGARタスクとは違い、ビデオレベルラベルのみが利用可能であるが、トレーニングデータにおいても、各フレーム内の重要人物は提供されない。
これにより、大規模なNBAデータセットの収集とアノテートが容易になり、GARに新たな課題が生まれます。
論文 参考訳(メタデータ) (2020-07-18T16:40:55Z) - A Framework for Behavioral Biometric Authentication using Deep Metric
Learning on Mobile Devices [17.905483523678964]
バッテリー駆動のモバイルデバイス上でのトレーニングを取り入れた新しいフレームワークを提案する。これにより、プライベートデータはデバイスを離れることなく、実行時の動作パターンに柔軟に適応するようにトレーニングをスケジュールすることができる。
実験では、3つの公開データセットで95%以上の認証精度が示され、データが少ないマルチクラスの分類では15%の精度が向上し、それぞれ99%と90%が成功したブルートフォース攻撃とサイドチャネル攻撃に対する堅牢性が向上した。
その結果,トレーニングはビデオ視聴よりも低エネルギーを消費し,ゲームよりも若干高いエネルギーを消費していることがわかった。
論文 参考訳(メタデータ) (2020-05-26T17:56:20Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。