Exploring the weather impact on bike sharing usage through a clustering
analysis
- URL: http://arxiv.org/abs/2008.07249v1
- Date: Mon, 17 Aug 2020 12:24:37 GMT
- Title: Exploring the weather impact on bike sharing usage through a clustering
analysis
- Authors: Jessica Quach, Reza Malekian
- Abstract summary: This study aims to explore how and in what magnitude weather impacts bike usage in Washington D.C.
Bike usage data and weather data are gathered for the city of Washington D.C. and are analyzed using k-means clustering algorithm.
- Score: 7.541020519717183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bike sharing systems (BSS) have been a popular traveling service for years
and are used worldwide. It is attractive for cities and users who wants to
promote healthier lifestyles; to reduce air pollution and greenhouse gas
emission as well as improve traffic. One major challenge to docked bike sharing
system is redistributing bikes and balancing dock stations. Some studies
propose models that can help forecasting bike usage; strategies for rebalancing
bike distribution; establish patterns or how to identify patterns. Other
studies propose to extend the approach by including weather data. This study
aims to extend upon these proposals and opportunities to explore how and in
what magnitude weather impacts bike usage. Bike usage data and weather data are
gathered for the city of Washington D.C. and are analyzed using k-means
clustering algorithm. K-means managed to identify three clusters that
correspond to bike usage depending on weather conditions. The results show that
the weather impact on bike usage was noticeable between clusters. It showed
that temperature followed by precipitation weighted the most, out of five
weather variables.
Related papers
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation [0.0]
Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling.
The data currently available to cities and citizens often only comes from sparsely located counting stations.
This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin.
arXiv Detail & Related papers (2024-06-26T16:01:53Z) - The Growth of E-Bike Use: A Machine Learning Approach [57.506876852412034]
E-bike usage in the U.S. resulted in a reduction of 15,737.82 kilograms of CO2 emissions in 2022.
E-bike users burned approximately 716,630.727 kilocalories through their activities in the same year.
arXiv Detail & Related papers (2023-07-15T03:34:10Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
We apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
arXiv Detail & Related papers (2022-12-18T21:43:27Z) - Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN [0.0]
Efforts to increase the bicycle's mode-share involve many measures, one of them being the improvement of cycling safety.
meaningful analysis of cycling safety requires accurate bicycle flow data that is generally sparse or not even available at a segment level.
This paper presents a Deep Learning based approach, to estimate hourly bicycle flow in Copenhagen, conditional on weather, temporal and road conditions.
arXiv Detail & Related papers (2022-04-20T17:00:29Z) - Improving short-term bike sharing demand forecast through an irregular
convolutional neural network [16.688608586485316]
The study proposes an irregular convolutional Long-Short Term Memory model (IrConv+LSTM) to improve short-term bike sharing demand forecast.
The proposed model is evaluated with a set of benchmark models in five study sites, which include one dockless bike sharing system in Singapore, and four station-based systems in Chicago, Washington, D.C., New York, and London.
The model also achieves superior performance in areas with varying levels of bicycle usage and during peak periods.
arXiv Detail & Related papers (2022-02-09T10:21:45Z) - Understanding Cycling Mobility: Bologna Case Study [0.0]
The main objective of this work is to study the cycling mobility within the city of Bologna, Italy.
We used six months dataset that consists of 320,118 self-reported bike trips.
The main results of this study indicate that bike usage is more correlated to temperature, and precipitation and has no correlation to wind speed and pollution.
arXiv Detail & Related papers (2021-09-09T13:11:35Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing
System Using Gated Graph Neural Network [79.61517670541863]
Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries.
redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors.
We propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network.
arXiv Detail & Related papers (2021-01-19T02:51:12Z) - 4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous
Driving [48.588254700810474]
We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving.
Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking.
arXiv Detail & Related papers (2020-09-14T12:31:20Z) - Modeling bike counts in a bike-sharing system considering the effect of
weather conditions [13.537141566893126]
The paper develops a method that quantifies the effect of weather conditions on the prediction of bike station counts in the San Francisco Bay Area Bike Share System.
arXiv Detail & Related papers (2020-06-13T05:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.