Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
- URL: http://arxiv.org/abs/2204.09620v1
- Date: Wed, 20 Apr 2022 17:00:29 GMT
- Title: Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
- Authors: Marcus Skyum Myhrmann and Stefan Eriksen Mabit
- Abstract summary: Efforts to increase the bicycle's mode-share involve many measures, one of them being the improvement of cycling safety.
meaningful analysis of cycling safety requires accurate bicycle flow data that is generally sparse or not even available at a segment level.
This paper presents a Deep Learning based approach, to estimate hourly bicycle flow in Copenhagen, conditional on weather, temporal and road conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cycling can reduce greenhouse gas emissions and air pollution and increase
public health. With this in mind, policy-makers in cities worldwide seek to
improve the bicycle mode-share. However, they often struggle against the fear
and the perceived riskiness of cycling. Efforts to increase the bicycle's
mode-share involve many measures, one of them being the improvement of cycling
safety. This requires the analysis of the factors surrounding accidents and the
outcome. However, meaningful analysis of cycling safety requires accurate
bicycle flow data that is generally sparse or not even available at a segment
level. Therefore, safety engineers often rely on aggregated variables or
calibration factors that fail to account for variations in the cycling traffic
caused by external factors. This paper fills this gap by presenting a Deep
Learning based approach, the Long Short-Term Memory Mixture Density Network
(LSTMMDN), to estimate hourly bicycle flow in Copenhagen, conditional on
weather, temporal and road conditions at the segment level. This method
addresses the shortcomings in the calibration factor method and results in
66-77\% more accurate bicycle traffic estimates. To quantify the impact of more
accurate bicycle traffic estimates in cycling safety analysis, we estimate
bicycle crash risk models to evaluate bicycle crashes in Copenhagen. The models
are identical except for the exposure variables being used. One model is
estimated using the LSTMMDN estimates, one using the calibration-based
estimates, and one using yearly mean traffic estimates. The results show that
investing in more advanced methods for obtaining bicycle volume estimates can
benefit the quality, mitigating efforts by improving safety analyses and other
performance measures.
Related papers
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation [0.0]
Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling.
The data currently available to cities and citizens often only comes from sparsely located counting stations.
This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin.
arXiv Detail & Related papers (2024-06-26T16:01:53Z) - AutoLTS: Automating Cycling Stress Assessment via Contrastive Learning
and Spatial Post-processing [4.599618895656792]
We propose a deep learning framework to support accurate, fast, and large-scale cycling stress assessments.
Our framework features i) a contrastive learning approach that leverages the ordinal relationship among cycling stress labels, and ii) a post-processing technique that enforces spatial smoothness into our predictions.
arXiv Detail & Related papers (2023-08-15T05:51:25Z) - Scoring Cycling Environments Perceived Safety using Pairwise Image
Comparisons [0.9299655616863538]
This study presents a novel approach to identifying how the perception of cycling safety can be analyzed and understood.
We repeatedly show respondents two road environments and ask them to select the one they perceive as safer for cycling.
We compare several methods capable of rating cycling environments from pairwise comparisons and classify cycling environments perceived as safe or unsafe.
arXiv Detail & Related papers (2023-07-25T10:31:45Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Monocular Cyclist Detection with Convolutional Neural Networks [0.0]
This study aims to reduce the number of vehicle-cyclist collisions, which are often caused by poor driver attention to blind spots.
We designed a state-of-the-art real-time monocular cyclist detection that can detect cyclists with object detection convolutional neural networks.
We conclude that this cyclist detection device can accurately and quickly detect cyclists and has the potential to improve cyclist safety significantly.
arXiv Detail & Related papers (2023-01-16T13:54:13Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
We apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
arXiv Detail & Related papers (2022-12-18T21:43:27Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Exploring the weather impact on bike sharing usage through a clustering
analysis [7.541020519717183]
This study aims to explore how and in what magnitude weather impacts bike usage in Washington D.C.
Bike usage data and weather data are gathered for the city of Washington D.C. and are analyzed using k-means clustering algorithm.
arXiv Detail & Related papers (2020-08-17T12:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.