Estimating Causal Effects with the Neural Autoregressive Density
Estimator
- URL: http://arxiv.org/abs/2008.07283v2
- Date: Mon, 1 Mar 2021 13:03:20 GMT
- Title: Estimating Causal Effects with the Neural Autoregressive Density
Estimator
- Authors: Sergio Garrido, Stanislav S. Borysov, Jeppe Rich, Francisco C. Pereira
- Abstract summary: We use neural autoregressive density estimators to estimate causal effects within the Pearl's do-calculus framework.
We show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.
- Score: 6.59529078336196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of causal effects is fundamental in situations were the underlying
system will be subject to active interventions. Part of building a causal
inference engine is defining how variables relate to each other, that is,
defining the functional relationship between variables given conditional
dependencies. In this paper, we deviate from the common assumption of linear
relationships in causal models by making use of neural autoregressive density
estimators and use them to estimate causal effects within the Pearl's
do-calculus framework. Using synthetic data, we show that the approach can
retrieve causal effects from non-linear systems without explicitly modeling the
interactions between the variables.
Related papers
- Do Finetti: On Causal Effects for Exchangeable Data [45.96632286841583]
We study causal effect estimation in a setting where the data are not i.i.d.
We focus on exchangeable data satisfying an assumption of independent causal mechanisms.
arXiv Detail & Related papers (2024-05-29T07:31:18Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
We present a comprehensive simulation study investigating the impact of feature correlation on the assessment of variable importance.
While there is always no correlation between knockoff variables and its corresponding predictor variables, we prove that the correlation increases linearly beyond a certain correlation threshold between the predictor variables.
arXiv Detail & Related papers (2024-02-05T19:02:13Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.