論文の概要: Bias and Discrimination in AI: a cross-disciplinary perspective
- arxiv url: http://arxiv.org/abs/2008.07309v1
- Date: Tue, 11 Aug 2020 10:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 12:28:41.586979
- Title: Bias and Discrimination in AI: a cross-disciplinary perspective
- Title(参考訳): AIにおけるバイアスと差別 : 学際的視点
- Authors: Xavier Ferrer, Tom van Nuenen, Jose M. Such, Mark Cot\'e and Natalia
Criado
- Abstract要約: 我々は、AIにおけるバイアスと差別の解決策を見つけるには、堅牢な学際的コラボレーションが必要であることを示した。
我々は、技術的、法的、社会的、倫理的な側面を組み込んだ学際的な視点から、AIにおけるバイアスと差別に関する関連文献を調査した。
- 参考スコア(独自算出の注目度): 5.190307793476366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread and pervasive use of Artificial Intelligence (AI) for
automated decision-making systems, AI bias is becoming more apparent and
problematic. One of its negative consequences is discrimination: the unfair, or
unequal treatment of individuals based on certain characteristics. However, the
relationship between bias and discrimination is not always clear. In this
paper, we survey relevant literature about bias and discrimination in AI from
an interdisciplinary perspective that embeds technical, legal, social and
ethical dimensions. We show that finding solutions to bias and discrimination
in AI requires robust cross-disciplinary collaborations.
- Abstract(参考訳): 自動意思決定システムに人工知能(AI)が広く普及し、AIバイアスがより明確で問題になっている。
その否定的な結果の1つは差別であり、ある特性に基づいて個人を不公平または不平等に扱うことである。
しかし、バイアスと差別の関係は必ずしも明確ではない。
本稿では,aiにおけるバイアスと差別に関する関連文献を,技術的,法的,社会的,倫理的側面を組み込んだ学際的視点から検討する。
AIにおける偏見と差別の解決策を見つけるには、堅牢な学際的コラボレーションが必要であることを示す。
関連論文リスト
- Generative Discrimination: What Happens When Generative AI Exhibits Bias, and What Can Be Done About It [2.2913283036871865]
第1章は、genAIが非差別法とどのように交わるかを考察する。
差別的アウトプットには2つの主要な種類がある: (i) 嫌悪的内容と (ii) 保護されたグループの不適切な表現による微妙なバイアス。
差別的なアウトプットに責任を負うgenAIプロバイダやデプロイの保持を主張し、genAI固有の問題に対処する従来の法的枠組みの不十分さを強調している。
論文 参考訳(メタデータ) (2024-06-26T13:32:58Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Queering the ethics of AI [0.6993026261767287]
この章は、AIが差別を永続させる可能性をめぐる倫理的懸念を強調している。
この章は、しばしば非差別法を支える平等の概念に対する批判的な検証が必要であると主張している。
論文 参考訳(メタデータ) (2023-08-25T17:26:05Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
この調査論文は、AIの公平性とバイアスに関する簡潔で包括的な概要を提供する。
我々は、データ、アルゴリズム、人間の決定バイアスなどのバイアス源をレビューする。
偏りのあるAIシステムの社会的影響を評価し,不平等の持続性と有害なステレオタイプの強化に着目した。
論文 参考訳(メタデータ) (2023-04-16T03:23:55Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Rethinking Fairness: An Interdisciplinary Survey of Critiques of
Hegemonic ML Fairness Approaches [0.0]
本稿では、機械学習(ML)における現在の公平性向上技術介入の批判を評価し、比較する。
哲学、フェミニスト研究、批判的な人種と民族研究、法学、人類学、科学と技術研究など、様々な非計算分野から派生している。
この記事は、社会における強大な力のダイナミクスと構造的不正を積極的に破壊する未来のMLフェアネス研究の方向性を想像することで締めくくっている。
論文 参考訳(メタデータ) (2022-05-06T14:27:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Data, Power and Bias in Artificial Intelligence [5.124256074746721]
人工知能は社会的偏見を悪化させ、平等な権利と市民の自由における数十年の進歩を取り戻せる可能性がある。
機械学習アルゴリズムの訓練に使用されるデータは、社会で学び、永続する可能性のある社会的不正、不平等、差別的な態度を捉えることができる。
本稿では、異なるドメインからのAIシステムにおけるデータの公正性、公平性、バイアス軽減を保証するための継続的な作業についてレビューする。
論文 参考訳(メタデータ) (2020-07-28T16:17:40Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。