Network Intrusion Detection Using Wrapper-based Decision Tree for
Feature Selection
- URL: http://arxiv.org/abs/2008.07405v1
- Date: Tue, 11 Aug 2020 04:00:58 GMT
- Title: Network Intrusion Detection Using Wrapper-based Decision Tree for
Feature Selection
- Authors: Mubarak Albarka Umar, Chen Zhanfang, Yan Liu
- Abstract summary: We propose a hybrid IDS modeling approach with an algorithm for feature selection (FS) and another for building an IDS.
Our method achieves the best DR of 97.95% and shown to be quite effective in comparison to state-of-the-art works.
- Score: 6.321652307514677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the key challenges of machine learning (ML) based intrusion detection
system (IDS) is the expensive computational complexity which is largely due to
redundant, incomplete, and irrelevant features contain in the IDS datasets. To
overcome such challenge and ensure building an efficient and more accurate IDS
models, many researchers utilize preprocessing techniques such as normalization
and feature selection in a hybrid modeling approach. In this work, we propose a
hybrid IDS modeling approach with an algorithm for feature selection (FS) and
another for building an IDS. The FS algorithm is a wrapper-based with a
decision tree as the feature evaluator. The propose FS method is used in
combination with some selected ML algorithms to build IDS models using the
UNSW-NB15 dataset. Some IDS models are built as a baseline in a single modeling
approach using the full features of the dataset. We evaluate the effectiveness
of our propose method by comparing it with the baseline models and also with
state-of-the-art works. Our method achieves the best DR of 97.95% and shown to
be quite effective in comparison to state-of-the-art works. We, therefore,
recommend its usage especially in IDS modeling with the UNSW-NB15 dataset.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - MLRS-PDS: A Meta-learning recommendation of dynamic ensemble selection pipelines [3.1140073169854485]
This paper introduces a meta-learning recommendation system (MLRS) to recommend the optimal pool generation scheme for dynamic ensemble selection.
The system employs a meta-model built from dataset meta-features to predict the most suitable pool generation scheme and DES method for a given dataset.
We demonstrate that this meta-learning recommendation system outperforms traditional fixed pool or DES method selection strategies.
arXiv Detail & Related papers (2024-07-10T10:31:57Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks.
Most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios.
We propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search.
arXiv Detail & Related papers (2024-05-20T04:36:02Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
The implemented approach is based on a parameter-free genetic algorithm for model design called GPComp@Free.
The experimental results confirm that a multi-objective approach to the model design allows achieving better diversity and quality of obtained models.
arXiv Detail & Related papers (2021-03-01T20:45:24Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information.
In this paper, we explore these issues from a new perspective.
We implement a kind of more flexible and efficient multi-scale cross-modal feature processing.
arXiv Detail & Related papers (2020-07-13T07:59:55Z) - StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics [4.237343083490243]
In machine learning (ML), ensemble methods such as bagging, boosting, and stacking are widely-established approaches.
StackGenVis is a visual analytics system for stacked generalization.
arXiv Detail & Related papers (2020-05-04T15:43:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.