MLRS-PDS: A Meta-learning recommendation of dynamic ensemble selection pipelines
- URL: http://arxiv.org/abs/2407.07528v1
- Date: Wed, 10 Jul 2024 10:31:57 GMT
- Title: MLRS-PDS: A Meta-learning recommendation of dynamic ensemble selection pipelines
- Authors: Hesam Jalalian, Rafael M. O. Cruz,
- Abstract summary: This paper introduces a meta-learning recommendation system (MLRS) to recommend the optimal pool generation scheme for dynamic ensemble selection.
The system employs a meta-model built from dataset meta-features to predict the most suitable pool generation scheme and DES method for a given dataset.
We demonstrate that this meta-learning recommendation system outperforms traditional fixed pool or DES method selection strategies.
- Score: 3.1140073169854485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic Selection (DS), where base classifiers are chosen from a classifier's pool for each new instance at test time, has shown to be highly effective in pattern recognition. However, instability and redundancy in the classifier pools can impede computational efficiency and accuracy in dynamic ensemble selection. This paper introduces a meta-learning recommendation system (MLRS) to recommend the optimal pool generation scheme for DES methods tailored to individual datasets. The system employs a meta-model built from dataset meta-features to predict the most suitable pool generation scheme and DES method for a given dataset. Through an extensive experimental study encompassing 288 datasets, we demonstrate that this meta-learning recommendation system outperforms traditional fixed pool or DES method selection strategies, highlighting the efficacy of a meta-learning approach in refining DES method selection. The source code, datasets, and supplementary results can be found in this project's GitHub repository: https://github.com/Menelau/MLRS-PDS.
Related papers
- Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for Lifelong Instruction Tuning.
We construct pseudo-skill clusters by grouping gradient-based sample vectors.
We select the best-performing data selector for each skill cluster from a pool of selector experts.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Multi-Teacher Multi-Objective Meta-Learning for Zero-Shot Hyperspectral Band Selection [50.30291173608449]
We propose a novel multi-objective meta-learning network (M$3$BS) for zero-shot hyperspectral band selection.
In M$3$BS, a generalizable graph convolution network (GCN) is constructed to generate dataset-agnostic base.
The acquired meta-knowledge can be directly transferred to unseen datasets without any retraining or fine-tuning.
arXiv Detail & Related papers (2024-06-12T07:13:31Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Learning to Maximize Mutual Information for Dynamic Feature Selection [13.821253491768168]
We consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information.
We explore a simpler approach of greedily selecting features based on their conditional mutual information.
The proposed method is shown to recover the greedy policy when trained to optimality, and it outperforms numerous existing feature selection methods in our experiments.
arXiv Detail & Related papers (2023-01-02T08:31:56Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Network Intrusion Detection Using Wrapper-based Decision Tree for
Feature Selection [6.321652307514677]
We propose a hybrid IDS modeling approach with an algorithm for feature selection (FS) and another for building an IDS.
Our method achieves the best DR of 97.95% and shown to be quite effective in comparison to state-of-the-art works.
arXiv Detail & Related papers (2020-08-11T04:00:58Z) - MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive
Model Selection [110.87712780017819]
We propose a meta-learning framework to facilitate user-level adaptive model selection in recommender systems.
We conduct experiments on two public datasets and a real-world production dataset.
arXiv Detail & Related papers (2020-01-22T16:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.