DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation
for Network Slicing
- URL: http://arxiv.org/abs/2008.07614v2
- Date: Wed, 19 Aug 2020 22:06:24 GMT
- Title: DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation
for Network Slicing
- Authors: Qiang Liu, Tao Han, Ning Zhang, Ye Wang
- Abstract summary: Network slicing enables multiple virtual networks run on the same physical infrastructure to support various use cases in 5G and beyond.
These use cases have very diverse network resource demands, e.g., communication and computation, and various performance metrics such as latency and throughput.
We propose DeepSlicing that integrates the alternating direction method of multipliers (ADMM) and deep reinforcement learning (DRL)
- Score: 20.723527476555574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network slicing enables multiple virtual networks run on the same physical
infrastructure to support various use cases in 5G and beyond. These use cases,
however, have very diverse network resource demands, e.g., communication and
computation, and various performance metrics such as latency and throughput. To
effectively allocate network resources to slices, we propose DeepSlicing that
integrates the alternating direction method of multipliers (ADMM) and deep
reinforcement learning (DRL). DeepSlicing decomposes the network slicing
problem into a master problem and several slave problems. The master problem is
solved based on convex optimization and the slave problem is handled by DRL
method which learns the optimal resource allocation policy. The performance of
the proposed algorithm is validated through network simulations.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Fast and Scalable Network Slicing by Integrating Deep Learning with
Lagrangian Methods [8.72339110741777]
Network slicing is a key technique in 5G and beyond for efficiently supporting diverse services.
Deep learning models suffer limited generalization and adaptability to dynamic slicing configurations.
We propose a novel framework that integrates constrained optimization methods and deep learning models.
arXiv Detail & Related papers (2024-01-22T07:19:16Z) - Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
Resource allocation significantly impacts the performance of vehicle-to-everything (V2X) networks.
Most existing algorithms for resource allocation are based on optimization or machine learning.
In this paper, we explore resource allocation in a V2X network under the framework of federated reinforcement learning.
arXiv Detail & Related papers (2023-10-15T15:26:54Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
Network slicing is proposed as a promising solution for resource utilization in 5G and future networks.
We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures.
We propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm.
arXiv Detail & Related papers (2021-11-16T11:54:09Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.