論文の概要: Ensemble Node Embeddings using Tensor Decomposition: A Case-Study on
DeepWalk
- arxiv url: http://arxiv.org/abs/2008.07672v1
- Date: Mon, 17 Aug 2020 23:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 03:06:20.437791
- Title: Ensemble Node Embeddings using Tensor Decomposition: A Case-Study on
DeepWalk
- Title(参考訳): テンソル分解を用いたエンサンブルノード埋め込み:DeepWalkのケーススタディ
- Authors: Jia Chen and Evangelos E. Papalexakis
- Abstract要約: 我々はTenSemble2Vecと呼ばれる新しいアンサンブルノード埋め込み手法を提案する。
TenSemble2Vecは、異なるメソッドや異なるハイパーパラメータを持つ同じメソッドの補完情報を活用しています。
実世界のデータを用いたテストは,提案手法の有効性を検証する。
- 参考スコア(独自算出の注目度): 14.693837823991565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Node embeddings have been attracting increasing attention during the past
years. In this context, we propose a new ensemble node embedding approach,
called TenSemble2Vec, by first generating multiple embeddings using the
existing techniques and taking them as multiview data input of the state-of-art
tensor decomposition model namely PARAFAC2 to learn the shared
lower-dimensional representations of the nodes. Contrary to other embedding
methods, our TenSemble2Vec takes advantage of the complementary information
from different methods or the same method with different hyper-parameters,
which bypasses the challenge of choosing models. Extensive tests using
real-world data validates the efficiency of the proposed method.
- Abstract(参考訳): ノードの埋め込みはここ数年で注目を集めている。
そこで本稿では,既存の手法を用いて複数の埋め込みを生成し,それらを最新テンソル分解モデルPARAFAC2のマルチビューデータ入力として利用し,ノードの低次元表現の共有を学習することで,新しいアンサンブルノード埋め込み手法であるTenSemble2Vecを提案する。
他の埋め込み手法とは対照的に、私たちのTenSemble2Vecは異なるメソッドや異なるハイパーパラメータを持つ同じメソッドの補完的な情報を活用しています。
実世界のデータを用いた広範囲なテストにより、提案手法の有効性が検証される。
関連論文リスト
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Toward Learning Robust and Invariant Representations with Alignment
Regularization and Data Augmentation [76.85274970052762]
本論文はアライメント正則化の選択肢の増大を動機としている。
我々は、ロバスト性および不変性の次元に沿って、いくつかの人気のある設計選択のパフォーマンスを評価する。
我々はまた、現実的と考える仮定の下で経験的な研究を補完するために、アライメント正則化の挙動を正式に分析する。
論文 参考訳(メタデータ) (2022-06-04T04:29:19Z) - Topic-aware latent models for representation learning on networks [5.304857921982132]
本稿では,トピックベース情報を用いたランダムウォークベースアプローチにより取得したノードの埋め込みを強化する汎用フレームワークであるTNEを紹介する。
提案手法はノード分類とリンク予測という2つのダウンストリームタスクで評価する。
論文 参考訳(メタデータ) (2021-11-10T08:52:52Z) - Deep Recursive Embedding for High-Dimensional Data [9.611123249318126]
本稿では,DNN(Deep Neural Network)と高次元データ埋め込みのための数学誘導埋め込みルールを組み合わせることを提案する。
本稿では,高次元空間から低次元空間へのパラメトリックマッピングを学習可能な汎用ディープ埋め込みネットワーク(DEN)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-31T23:22:33Z) - Light Field Saliency Detection with Dual Local Graph Learning
andReciprocative Guidance [148.9832328803202]
我々は、グラフネットワークを介して焦点スタック内のインフォメーション融合をモデル化する。
我々は、全焦点パタンを用いて焦点スタック融合過程をガイドする新しいデュアルグラフモデルを構築した。
論文 参考訳(メタデータ) (2021-10-02T00:54:39Z) - Deep Recursive Embedding for High-Dimensional Data [10.499461691493526]
深層ニューラルネットワーク(DNN)と,高次元データ埋め込みのための数学的基盤埋め込み規則を組み合わせることを提案する。
本実験は,高次元データ埋め込みにおけるDRE(Deep Recursive Embedding)の優れた性能を示すものである。
論文 参考訳(メタデータ) (2021-04-12T03:04:38Z) - Joint Entity and Relation Canonicalization in Open Knowledge Graphs
using Variational Autoencoders [11.259587284318835]
オープンナレッジグラフの名詞句と関係句は正規化されず、冗長で曖昧な主語関係対象のトリプルが爆発する。
まず、名詞句と関係句の両方の埋め込み表現を生成し、次にクラスタリングアルゴリズムを使用して、埋め込みを機能としてグループ化します。
本研究では,組込みとクラスタ割り当ての両方をエンドツーエンドアプローチで学習する共同モデルであるCUVA(Canonicalizing Using Variational AutoEncoders)を提案する。
論文 参考訳(メタデータ) (2020-12-08T22:58:30Z) - Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference &
Application [20.63938300312815]
2次元画像における幾何学的閉塞に関する概念(意味論を無視する)を定式化する。
本稿では, 画素対閉塞関係を用いて, 閉塞境界と閉塞方向の両方を統一的に定式化することを提案する。
各種データセットの実験により,本手法が既存の手法よりも優れていることが示された。
また,最新のモノクル深度推定法の性能を一貫して向上する新しい深度マップの改良手法を提案する。
論文 参考訳(メタデータ) (2020-07-23T15:52:09Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。