論文の概要: Enhanced MRI Reconstruction Network using Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2008.08248v1
- Date: Wed, 19 Aug 2020 03:44:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 09:17:16.772219
- Title: Enhanced MRI Reconstruction Network using Neural Architecture Search
- Title(参考訳): ニューラルアーキテクチャサーチによるMRI再構成網の強化
- Authors: Qiaoying Huang, Dong Yang, Yikun Xian, Pengxiang Wu, Jingru Yi, Hui
Qu, Dimitris Metaxas
- Abstract要約: 残差基本ブロックを用いたMRI再構成ネットワークを提案する。
基本ブロック内の各セルに対して、差別化可能なニューラルアーキテクチャサーチ(NAS)技術を用いて、最適な操作を自動的に選択する。
この新しい異種ネットワークは2つの公開データセットで評価され、現在の最先端の手法よりも優れています。
- 参考スコア(独自算出の注目度): 22.735244777008422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate reconstruction of under-sampled magnetic resonance imaging (MRI)
data using modern deep learning technology, requires significant effort to
design the necessary complex neural network architectures. The cascaded network
architecture for MRI reconstruction has been widely used, while it suffers from
the "vanishing gradient" problem when the network becomes deep. In addition,
homogeneous architecture degrades the representation capacity of the network.
In this work, we present an enhanced MRI reconstruction network using a
residual in residual basic block. For each cell in the basic block, we use the
differentiable neural architecture search (NAS) technique to automatically
choose the optimal operation among eight variants of the dense block. This new
heterogeneous network is evaluated on two publicly available datasets and
outperforms all current state-of-the-art methods, which demonstrates the
effectiveness of our proposed method.
- Abstract(参考訳): 現代のディープラーニング技術を用いて、アンダーサンプル磁気共鳴イメージング(MRI)データの正確な再構成を行うには、複雑なニューラルネットワークアーキテクチャの設計に多大な努力が必要である。
MRI再構成のためのカスケードネットワークアーキテクチャは広く使われてきたが、ネットワークが深くなった際には「消滅勾配」の問題に悩まされている。
さらに、均質なアーキテクチャはネットワークの表現能力を低下させる。
本研究では,残差基本ブロックを用いたMRI再構成ネットワークを提案する。
基本ブロックの各セルに対して、微分可能なニューラルネットワークサーチ(NAS)技術を用いて、高密度ブロックの8つの変種間の最適操作を自動的に選択する。
このニューヘテロジニアスネットワークは2つの公開データセット上で評価され,提案手法の有効性を示す最先端手法を上回っている。
関連論文リスト
- MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI [50.55024115943266]
我々は、fMRI条件の特徴ベクトルを生成するためにMindFormerと呼ばれる新しいトランスフォーマーアーキテクチャを導入する。
MindFormerは,1)fMRI信号から意味論的に意味のある特徴を抽出するIP-Adapterに基づく新しいトレーニング戦略,2)fMRI信号の個人差を効果的に捉える主観的トークンと線形層である。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
磁気共鳴画像(MRI)の高速化のための圧縮センシング(CS)対応データ再構成の適用は依然として難しい問題である。
これは、加速マスクからk空間で失った情報が、完全にサンプリングされた画像の質に似た画像の再構成を困難にしているためである。
我々は,k空間と画像領域の両方で学習を行う,深層学習に基づく注目ハイブリッド変分ネットワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
論文 参考訳(メタデータ) (2022-06-15T03:42:18Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z) - Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction [36.636219616998225]
そこで我々は,手作業ではなくNASによるMR画像再構成問題に対して,新しい,効率的なネットワークを提案する。
実験の結果,検索したネットワークは,従来の最先端手法と比較して,より良好な再構成結果が得られることがわかった。
提案手法は, MR再構成問題に対するコストと再構成性能のトレードオフを, 高い一般化性で向上させることができる。
論文 参考訳(メタデータ) (2020-02-22T04:40:16Z) - ODE-based Deep Network for MRI Reconstruction [1.569044447685249]
画像品質を向上したMR画像の高速取得を実現するために,MRI再構成のためのODEベースのディープネットワークを提案する。
提案手法は, 標準UNetネットワークとResidualネットワークをベースとした再構成手法と比較して, 高品質な画像を提供できることを示す。
論文 参考訳(メタデータ) (2019-12-27T20:13:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。