Momentum-Space Unitary Coupled Cluster and Translational Quantum
Subspace Expansion for Periodic Systems on Quantum Computers
- URL: http://arxiv.org/abs/2008.08694v2
- Date: Mon, 4 Jan 2021 17:54:44 GMT
- Title: Momentum-Space Unitary Coupled Cluster and Translational Quantum
Subspace Expansion for Periodic Systems on Quantum Computers
- Authors: David Zsolt Manrique, Irfan T. Khan, Kentaro Yamamoto, Vijja
Wichitwechkarn, David Mu\~noz Ramo
- Abstract summary: We demonstrate the use of the Variational Quantum Eigensolver (VQE) to simulate solid state crystalline materials.
We map complex cluster operators to a quantum circuit ansatz to take advantage of the reduced number of excitation operators and Hamiltonian terms.
We also demonstrate an extension of the point group symmetry based qubit tapering method to periodic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate the use of the Variational Quantum Eigensolver (VQE) to
simulate solid state crystalline materials. We adapt the Unitary Coupled
Cluster ansatz to periodic boundary conditions in real space and momentum space
representations and directly map complex cluster operators to a quantum circuit
ansatz to take advantage of the reduced number of excitation operators and
Hamiltonian terms due to momentum conservation. To further reduce required
quantum resources, such as the number of UCCSD amplitudes, circuit depth,
required number of qubits and number of measurement circuits, we investigate a
translational Quantum Subspace Expansion method (TransQSE) for the localized
representation of the periodic Hamiltonian. Additionally, we also demonstrate
an extension of the point group symmetry based qubit tapering method to
periodic systems. We compare accuracy and computational costs for a range of
geometries for 1D chains of dimerized hydrogen, helium and lithium hydride with
increasing number of momentum space grid points and also demonstrate VQE
calculations for 2D and 3D hydrogen and helium lattices. Our presented
strategies enable the use of near-term quantum hardware to perform solid state
simulation with variational quantum algorithms.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Floquet engineering of continuous-time quantum walks: towards the
simulation of complex and next-to-nearest neighbor couplings [0.0]
We apply the idea of Floquet engineering in the context of continuous-time quantum walks on graphs.
We define periodically-driven Hamiltonians which can be used to simulate the dynamics of certain target quantum walks.
Our work provides explicit simulation protocols that may be used for directing quantum transport, engineering the dispersion relation of one-dimensional quantum walks or investigating quantum dynamics in highly connected structures.
arXiv Detail & Related papers (2020-12-01T12:46:56Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z) - Variational Quantum Simulation for Periodic Materials [0.0]
We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures.
Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.
arXiv Detail & Related papers (2020-08-21T14:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.