Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures
- URL: http://arxiv.org/abs/2008.08764v1
- Date: Thu, 20 Aug 2020 04:06:31 GMT
- Title: Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures
- Authors: Sonia Mobassem, Nicholas J. Lambert, Alfredo Rueda, Johannes M. Fink,
Gerd Leuchs, and Harald G. L. Schwefel
- Abstract summary: We study the thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator.
We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum bits (qubits) on which superconducting quantum computers are
based have energy scales corresponding to photons with GHz frequencies. The
energy of photons in the gigahertz domain is too low to allow transmission
through the noisy room-temperature environment, where the signal would be lost
in thermal noise. Optical photons, on the other hand, have much higher
energies, and signals can be detected using highly efficient single-photon
detectors. Transduction from microwave to optical frequencies is therefore a
potential enabling technology for quantum devices. However, in such a device
the optical pump can be a source of thermal noise and thus degrade the
fidelity; the similarity of input microwave state to the output optical state.
In order to investigate the magnitude of this effect we model the sub-Kelvin
thermal behavior of an electro-optic transducer based on a lithium niobate
whispering gallery mode resonator. We find that there is an optimum power level
for a continuous pump, whilst pulsed operation of the pump increases the
fidelity of the conversion.
Related papers
- Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps [0.0]
Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
arXiv Detail & Related papers (2024-09-09T23:31:15Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Optically heralded microwave photons [1.606071974243323]
A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
arXiv Detail & Related papers (2022-10-19T17:27:25Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Ultra-low-noise Microwave to Optics Conversion in Gallium Phosphide [0.0]
Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains.
We exploit the remarkable properties of thin-film gallium phosphide to demonstrate bi-directional on-chip conversion between microwave and optical frequencies.
arXiv Detail & Related papers (2021-07-09T13:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.