論文の概要: A Deep Prediction Network for Understanding Advertiser Intent and
Satisfaction
- arxiv url: http://arxiv.org/abs/2008.08931v1
- Date: Thu, 20 Aug 2020 15:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 03:14:31.868416
- Title: A Deep Prediction Network for Understanding Advertiser Intent and
Satisfaction
- Title(参考訳): 広告インテントと満足度を理解するための深層予測ネットワーク
- Authors: Liyi Guo, Rui Lu, Haoqi Zhang, Junqi Jin, Zhenzhe Zheng, Fan Wu, Jin
Li, Haiyang Xu, Han Li, Wenkai Lu, Jian Xu, Kun Gai
- Abstract要約: 本稿では,広告主の意図と満足度を同時にモデル化する新しいDeep Satisfaction Prediction Network (DSPN)を提案する。
提案するDSPNは,最先端のベースラインより優れ,オンライン環境におけるAUCの観点からも安定した性能を有する。
- 参考スコア(独自算出の注目度): 41.000912016821246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For e-commerce platforms such as Taobao and Amazon, advertisers play an
important role in the entire digital ecosystem: their behaviors explicitly
influence users' browsing and shopping experience; more importantly,
advertiser's expenditure on advertising constitutes a primary source of
platform revenue. Therefore, providing better services for advertisers is
essential for the long-term prosperity for e-commerce platforms. To achieve
this goal, the ad platform needs to have an in-depth understanding of
advertisers in terms of both their marketing intents and satisfaction over the
advertising performance, based on which further optimization could be carried
out to service the advertisers in the correct direction. In this paper, we
propose a novel Deep Satisfaction Prediction Network (DSPN), which models
advertiser intent and satisfaction simultaneously. It employs a two-stage
network structure where advertiser intent vector and satisfaction are jointly
learned by considering the features of advertiser's action information and
advertising performance indicators. Experiments on an Alibaba advertisement
dataset and online evaluations show that our proposed DSPN outperforms
state-of-the-art baselines and has stable performance in terms of AUC in the
online environment. Further analyses show that DSPN not only predicts
advertisers' satisfaction accurately but also learns an explainable advertiser
intent, revealing the opportunities to optimize the advertising performance
further.
- Abstract(参考訳): TaobaoやAmazonのようなeコマースプラットフォームでは、広告主はデジタルエコシステム全体において重要な役割を担っている。
したがって、広告主により良いサービスを提供することは、eコマースプラットフォームの長期的な繁栄に不可欠である。
この目標を達成するためには、広告プラットフォームは広告主のマーケティング意図と広告パフォーマンスに対する満足度の両方について、広告主を深く理解する必要がある。
本稿では,広告主の意図と満足度を同時にモデル化した新しいDeep Satisfaction Prediction Network (DSPN)を提案する。
広告主の行動情報と広告パフォーマンス指標の特徴を考慮し、広告主の意図ベクトルと満足度を共同で学習する2段階ネットワーク構造を用いる。
Alibabaの広告データセットとオンライン評価実験により、提案したDSPNは最先端のベースラインを上回り、オンライン環境におけるAUCの点で安定したパフォーマンスを示した。
さらに、DSPNは広告主の満足度を正確に予測するだけでなく、説明可能な広告主の意図も学習し、広告パフォーマンスをさらに最適化する機会を明らかにしている。
関連論文リスト
- Click Without Compromise: Online Advertising Measurement via Per User Differential Privacy [22.38999810583601]
本稿では,広告測定結果のための新しいユーザレベルの差分プライバシー保護スキームであるAds-BPCを紹介する。
Ads-BPCは、広告測定に適用された既存のストリーミングDPメカニズムよりも25%から50%精度が向上する。
論文 参考訳(メタデータ) (2024-06-04T16:31:19Z) - Discrimination through Image Selection by Job Advertisers on Facebook [79.21648699199648]
求人広告における新たな差別手段の出現状況について検討する。
ターゲティングとデリバリーの両方を組み合わせ、求人広告画像の特定の人口層を不均等に表現したり排除したりする。
私たちはFacebook Ad Libraryを使って、このプラクティスの有病率を実証しています。
論文 参考訳(メタデータ) (2023-06-13T03:43:58Z) - AI-Driven Contextual Advertising: A Technology Report and Implication
Analysis [0.0]
プログラム広告はデジタル広告空間の自動オークションである。
文脈広告に対する関心は、部分的には現在の個人データへの依存に対する反作用である。
人工知能(AI)の発展により、コンテキストのより深いセマンティックな理解が可能になる。
論文 参考訳(メタデータ) (2022-05-02T13:44:58Z) - Online Advertising Revenue Forecasting: An Interpretable Deep Learning
Approach [0.0]
本稿では,出版社の広告収入を予測する新しいアテンションベースアーキテクチャを提案する。
この結果は,複数の時間地平線上での深層学習時系列予測モデルよりも優れていた。
論文 参考訳(メタデータ) (2021-11-16T23:55:02Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
本稿では,ディスプレイ広告プラットフォーム上での動的入札戦略レコメンデーションのためのレコメンデーションシステムを提案する。
ニューラルネットワークをエージェントとして使用して,広告主のプロファイルや過去の採用行動に基づいて,広告主の要求を予測する。
オンライン評価は、広告主の広告パフォーマンスを最適化できることを示している。
論文 参考訳(メタデータ) (2021-05-25T17:06:59Z) - Multi-Channel Sequential Behavior Networks for User Modeling in Online
Advertising [4.964012641964141]
本稿では,ユーザと広告を意味空間に埋め込むための深層学習手法であるマルチチャネルシーケンシャル行動ネットワーク(mc-sbn)を提案する。
提案するユーザエンコーダアーキテクチャでは,過去の検索クエリや訪問ページ,クリックした広告など,複数の入力チャネルからのユーザアクティビティをユーザベクトルにまとめる。
その結果,MC-SBNは関連広告のランク付けを改善し,クリック予測とコンバージョン予測の両方の性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-12-27T06:13:29Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
本稿では,これらの問題に対処するディープインテントシーケンス広告(DISA)手法を提案する。
解釈可能性の鍵となる部分は、消費者の購入意図を理解することである。
論文 参考訳(メタデータ) (2020-09-03T05:12:26Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
本研究は,広告主ブランドの商品に対する消費者の支払い意欲に及ぼす割り込み広告の影響を計測する研究結果である。
本研究は, 広告の経済的影響に関する研究に寄与し, 実験マーケティング研究における実際の(自己申告の)支払意欲を測定する方法を紹介した。
論文 参考訳(メタデータ) (2020-05-14T09:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。