論文の概要: Training Sensitivity in Graph Isomorphism Network
- arxiv url: http://arxiv.org/abs/2008.09020v1
- Date: Wed, 19 Aug 2020 03:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 09:18:20.936080
- Title: Training Sensitivity in Graph Isomorphism Network
- Title(参考訳): グラフ同型ネットワークにおけるトレーニング感度
- Authors: Md. Khaledur Rahman
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフの低次元表現を学習するための一般的なツールである。
本稿では,多様なベンチマークデータセットを用いて,各モジュールの様々な代替機能について検討する。
- 参考スコア(独自算出の注目度): 2.487445341407889
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph neural network (GNN) is a popular tool to learn the lower-dimensional
representation of a graph. It facilitates the applicability of machine learning
tasks on graphs by incorporating domain-specific features. There are various
options for underlying procedures (such as optimization functions, activation
functions, etc.) that can be considered in the implementation of GNN. However,
most of the existing tools are confined to one approach without any analysis.
Thus, this emerging field lacks a robust implementation ignoring the highly
irregular structure of the real-world graphs. In this paper, we attempt to fill
this gap by studying various alternative functions for a respective module
using a diverse set of benchmark datasets. Our empirical results suggest that
the generally used underlying techniques do not always perform well to capture
the overall structure from a set of graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフの低次元表現を学習するための一般的なツールである。
ドメイン固有の機能を組み込むことで、グラフ上の機械学習タスクの適用性を高める。
基礎となる手順(最適化関数、アクティベーション関数など)については、GNNの実装で考慮できる様々な選択肢がある。
しかし、既存のツールのほとんどは、分析なしで1つのアプローチに限定されている。
したがって、この出現する分野は実世界のグラフの非常に不規則な構造を無視した堅牢な実装を欠いている。
本稿では,多様なベンチマークデータセットを用いて,各モジュールの様々な代替関数を探索することにより,このギャップを埋めようとしている。
実験結果から,一般的に使用される手法は,グラフの集合から全体構造を捉えるのに必ずしもうまく機能しないことが示唆された。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning [37.318961625795204]
グラフニューラルネットワーク(GNN)は、多くのハイインパクトな実世界のグラフアプリケーションにおいて最先端のアプローチとなっている。
機能豊富なグラフでは、PMを直接利用して機能を生成するのが一般的である。
PMから抽出されたノード特徴がグラフに依存しず、GNNがグラフ構造とノード特徴の間の潜在的な相関を十分に活用できないため、このプラクティスは準最適である。
論文 参考訳(メタデータ) (2023-09-25T05:44:40Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Learning Adaptive Neighborhoods for Graph Neural Networks [45.94778766867247]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データのエンドツーエンド学習を可能にする。
本稿では,グラフトポロジを構築する新しいエンドツーエンドの微分可能なグラフ生成器を提案する。
私たちのモジュールは、グラフ畳み込み操作を含む既存のパイプラインに簡単に統合できます。
論文 参考訳(メタデータ) (2023-07-18T08:37:25Z) - Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet
Energy [103.74640329539389]
特徴選択と識別可能な$k $-NNグラフ学習を同時に行うディープFS法を提案する。
我々は、ニューラルネットワークで$ k $-NNグラフを学習する際の非微分可能性問題に対処するために、最適輸送理論を用いる。
本モデルの有効性を,合成データセットと実世界のデータセットの両方で広範な実験により検証する。
論文 参考訳(メタデータ) (2023-05-21T08:15:55Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z) - Pointer Graph Networks [48.44209547013781]
グラフニューラルネットワーク(GNN)は通常、前もって知られていると仮定される静的グラフに適用される。
Pointer Graph Networks (PGNs) モデル一般化能力を改善するために、追加の推論エッジを備えた拡張セットまたはグラフ。
PGNは各ノードが別のノードを動的に指し、メッセージがこれらのポインタを渡ることを可能にする。
論文 参考訳(メタデータ) (2020-06-11T12:52:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。