Noise thresholds for classical simulability of non-linear Boson sampling
- URL: http://arxiv.org/abs/2202.12052v2
- Date: Tue, 11 Oct 2022 14:20:53 GMT
- Title: Noise thresholds for classical simulability of non-linear Boson sampling
- Authors: Gabriele Bressanini, Hyukjoon Kwon and M.S. Kim
- Abstract summary: We introduce higher order non-linearities as a mean to enhance the computational complexity of the problem and the protocol's robustness against noise.
Our results indicate that the addition of single-mode Kerr non-linearity at the input state preparation level, while retaining a linear-optical evolution, makes the Boson sampling protocol more robust against noise.
- Score: 4.812718493682455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Boson sampling, a computational problem conjectured to be hard to simulate on
a classical machine, is a promising candidate for an experimental demonstration
of quantum advantage using bosons. However, inevitable experimental noise and
imperfections, such as loss in the interferometer and random counts at the
detectors, could challenge the sampling task from entering the regime where
quantum advantage is achievable. In this work we introduce higher order
non-linearities as a mean to enhance the computational complexity of the
problem and the protocol's robustness against noise, i.e. increase the noise
threshold that allows to perform an efficient classical simulation of the
problem. Using a phase-space method based on the negativity volume of the
relevant quasi-probability distributions, we establish a necessary
non-classicality condition that any experimental proof of quantum advantage
must satisfy. Our results indicate that the addition of single-mode Kerr
non-linearity at the input state preparation level, while retaining a
linear-optical evolution, makes the Boson sampling protocol more robust against
noise and consequently relaxes the constraints on noise parameters required to
show quantum advantage.
Related papers
- Variational Tensor Network Simulation of Gaussian Boson Sampling and Beyond [0.0]
We propose a classical simulation tool for general continuous variable sampling problems.
We reformulate the sampling problem as that of finding the ground state of a simple few-body Hamiltonian.
We validate our method by simulating Gaussian Boson Sampling, where we achieve results comparable to the state of the art.
arXiv Detail & Related papers (2024-10-24T13:43:06Z) - On computational complexity and average-case hardness of shallow-depth boson sampling [0.0]
Boson sampling, a computational task believed to be classically hard to simulate, is expected to hold promise for demonstrating quantum computational advantage.
Noise in experimental implementations poses a significant challenge, potentially rendering boson sampling classically simulable and compromising its classical intractability.
We explore the viability of achieving quantum computational advantage through boson sampling with shallow-depth linear optical circuits.
arXiv Detail & Related papers (2024-05-03T00:12:48Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Quantum simulation of dynamical phase transitions in noisy quantum
devices [0.0]
Zero-noise extrapolation provides an especially useful error mitigation method for noisy quantum devices.
Noise alters the behavior of the Loschmidt echo at the dynamical phase transition times.
Zero-noise extrapolation may be employed to recover quantum revivals of the Loschmidt echo.
arXiv Detail & Related papers (2022-11-15T17:22:20Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Non-linear Boson Sampling [0.0]
We introduce the adoption of non-linear photon-photon interactions in the Boson Sampling framework.
By extending the computational expressivity of Boson Sampling, the introduction of non-linearities promises to disclose novel functionalities.
arXiv Detail & Related papers (2021-10-26T15:41:51Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Comparative Study of Sampling-Based Simulation Costs of Noisy Quantum
Circuits [0.8206877486958002]
We characterize the simulation costs of two major quantum schemes, stabilizer-state sampling of magic states and Heisenberg propagation.
It revealed that in the low noise regime, stabilizer-state sampling results in a smaller sampling cost, while Heisenberg propagation is better in the high noise regime.
arXiv Detail & Related papers (2020-11-12T07:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.