Federated Learning with Communication Delay in Edge Networks
- URL: http://arxiv.org/abs/2008.09323v1
- Date: Fri, 21 Aug 2020 06:21:35 GMT
- Title: Federated Learning with Communication Delay in Edge Networks
- Authors: Frank Po-Chen Lin, Christopher G. Brinton, Nicol\`o Michelusi
- Abstract summary: Federated learning has received significant attention as a potential solution for distributing machine learning (ML) model training through edge networks.
This work addresses an important consideration of federated learning at the network edge: communication delays between the edge nodes and the aggregator.
A technique called FedDelAvg (federated delayed averaging) is developed, which generalizes the standard federated averaging algorithm to incorporate a weighting between the current local model and the delayed global model received at each device during the synchronization step.
- Score: 5.500965885412937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has received significant attention as a potential solution
for distributing machine learning (ML) model training through edge networks.
This work addresses an important consideration of federated learning at the
network edge: communication delays between the edge nodes and the aggregator. A
technique called FedDelAvg (federated delayed averaging) is developed, which
generalizes the standard federated averaging algorithm to incorporate a
weighting between the current local model and the delayed global model received
at each device during the synchronization step. Through theoretical analysis,
an upper bound is derived on the global model loss achieved by FedDelAvg, which
reveals a strong dependency of learning performance on the values of the
weighting and learning rate. Experimental results on a popular ML task indicate
significant improvements in terms of convergence speed when optimizing the
weighting scheme to account for delays.
Related papers
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning.
It consumes excessive learning time due to the existence of straggler devices.
A novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning.
arXiv Detail & Related papers (2022-04-01T14:49:55Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data [14.269800282001464]
Federated edge learning (FEEL) has emerged as an effective approach to reduce the large communication latency in Cloud-based machine learning solutions.
We investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL)
By allowing model aggregation across different edge clusters, SD-FEEL enjoys the benefit of FEEL in reducing the training latency.
arXiv Detail & Related papers (2021-04-26T16:11:47Z) - Fast-Convergent Federated Learning [82.32029953209542]
Federated learning is a promising solution for distributing machine learning tasks through modern networks of mobile devices.
We propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training.
arXiv Detail & Related papers (2020-07-26T14:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.