論文の概要: Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks
- arxiv url: http://arxiv.org/abs/2008.09377v1
- Date: Fri, 21 Aug 2020 08:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 20:45:10.885796
- Title: Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks
- Title(参考訳): 逐次オブジェクト操作タスクのための後見体験リプレイによるカリキュラム学習
- Authors: Binyamin Manela, Armin Biess
- Abstract要約: 本稿では,カリキュラム学習とHER(Hindsight Experience Replay)を組み合わせて,逐次的なオブジェクト操作タスクを学習するアルゴリズムを提案する。
このアルゴリズムは、多くのオブジェクト操作タスクに固有のリカレント構造を利用し、元のシミュレーションで学習プロセス全体を各ソースタスクに調整することなく実装する。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning complex tasks from scratch is challenging and often impossible for
humans as well as for artificial agents. A curriculum can be used instead,
which decomposes a complex task (target task) into a sequence of source tasks
(the curriculum). Each source task is a simplified version of the next source
task with increasing complexity. Learning then occurs gradually by training on
each source task while using knowledge from the curriculum's prior source
tasks. In this study, we present a new algorithm that combines curriculum
learning with Hindsight Experience Replay (HER), to learn sequential object
manipulation tasks for multiple goals and sparse feedback. The algorithm
exploits the recurrent structure inherent in many object manipulation tasks and
implements the entire learning process in the original simulation without
adjusting it to each source task. We have tested our algorithm on three
challenging throwing tasks and show vast improvements compared to vanilla-HER.
- Abstract(参考訳): 複雑なタスクをゼロから学習することは困難であり、人や人工エージェントにとって不可能であることが多い。
カリキュラムは代わりに使用することができ、複雑なタスク(ターゲットタスク)を一連のソースタスク(カリキュラム)に分解する。
各ソースタスクは、複雑さを増す次のソースタスクの単純化バージョンである。
学習は、カリキュラムの事前のソースタスクからの知識を使いながら、各ソースタスクのトレーニングによって徐々に行われる。
本研究では,カリキュラム学習と後見体験リプレイ(her)を組み合わせて,複数の目標に対して逐次オブジェクト操作タスクを学習し,フィードバックを分散させる新しいアルゴリズムを提案する。
このアルゴリズムは、多くのオブジェクト操作タスクに固有のリカレント構造を利用し、元のシミュレーションで学習プロセス全体を各ソースタスクに調整することなく実装する。
我々は,3つの挑戦的な投球課題に対して,このアルゴリズムを検証した。
関連論文リスト
- Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
推定タスクの不確実性の定量化は、オンラインやアクティブな学習など、多くの下流アプリケーションにとって重要な課題である。
タスク間の類似性やタスクの特徴を学習者に提供できない場合、課題設定において新しいマルチタスク信頼区間を提供する。
本稿では,このパラメータを事前に知らないまま,このような改善された後悔を実現する新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T13:08:09Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-30T12:32:43Z) - Teacher-student curriculum learning for reinforcement learning [1.7259824817932292]
強化学習(rl)は、シーケンシャルな意思決定問題に対する一般的なパラダイムである。
深部強化学習手法のサンプル非効率性は,実世界の問題に適用する際の重要な障害である。
そこで我々は,学生が選択した課題の解き方を学習している間に,生徒の課題を選択する教師を同時に訓練する学習環境を提案する。
論文 参考訳(メタデータ) (2022-10-31T14:45:39Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Active Multi-Task Representation Learning [50.13453053304159]
本研究は,アクティブラーニングの手法を活用することで,資源タスクのサンプリングに関する最初の公式な研究を行う。
提案手法は, 対象タスクに対する各ソースタスクの関連性を反復的に推定し, その関連性に基づいて各ソースタスクからサンプルを抽出するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-02T08:23:24Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z) - Multi-task curriculum learning in a complex, visual, hard-exploration
domain: Minecraft [18.845438529816004]
私たちは、複雑な視覚的な領域でカリキュラムの学習を探索し、多くの難しい探索課題を経験します。
学習の進歩は,効果的なカリキュラムを自動構築する上で,学習可能性の信頼性の高い尺度であることが判明した。
論文 参考訳(メタデータ) (2021-06-28T17:50:40Z) - Reset-Free Reinforcement Learning via Multi-Task Learning: Learning
Dexterous Manipulation Behaviors without Human Intervention [67.1936055742498]
マルチタスク学習は、リセットフリーの学習スキームをはるかに複雑な問題に効果的にスケールできることを示す。
この研究は、人間の介入なしにRLを用いて現実世界での巧妙な操作行動を学ぶ能力を示す。
論文 参考訳(メタデータ) (2021-04-22T17:38:27Z) - Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer
Learning to Discover Task Hierarchy [0.0]
オープンエンド環境では、ロボットは階層的強化学習において複数のパラメータ化された制御タスクを学習する必要がある。
最も複雑なタスクは、より単純なタスクから知識を転送することでより簡単に学習でき、タスクにアクションの複雑さを適用することでより早く学習できることを示します。
複雑な行動のタスク指向表現(手順と呼ばれる)を提案し、オンラインのタスク関係とアクションプリミティブの無制限のシーケンスを学び、環境の異なる可観測性を制御する。
論文 参考訳(メタデータ) (2021-02-19T10:44:08Z) - Representation Ensembling for Synergistic Lifelong Learning with
Quasilinear Complexity [17.858926093389737]
生涯学習では、データは現在のタスクだけでなく、以前に遭遇したタスクや、未報告のタスクでもパフォーマンスを向上させるために使用される。
私たちの重要な洞察は、異なるタスクで独立して学習された表現を相乗的にアンサンブルすることで、前方と後方の両方の転送を可能にします。
論文 参考訳(メタデータ) (2020-04-27T16:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。