論文の概要: TAnoGAN: Time Series Anomaly Detection with Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2008.09567v2
- Date: Fri, 25 Sep 2020 01:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 20:53:39.914935
- Title: TAnoGAN: Time Series Anomaly Detection with Generative Adversarial
Networks
- Title(参考訳): TAnoGAN:生成逆ネットワークを用いた時系列異常検出
- Authors: Md Abul Bashar, Richi Nayak
- Abstract要約: 本稿では,時系列中の異常を検出するため,TAnoGanと呼ばれる新しいGANベースの教師なし手法を提案する。
さまざまな領域をカバーする46のリアルタイム時系列データセットを用いて,TAnoGanを評価した。
- 参考スコア(独自算出の注目度): 1.9290392443571387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in time series data is a significant problem faced in many
application areas such as manufacturing, medical imaging and cyber-security.
Recently, Generative Adversarial Networks (GAN) have gained attention for
generation and anomaly detection in image domain. In this paper, we propose a
novel GAN-based unsupervised method called TAnoGan for detecting anomalies in
time series when a small number of data points are available. We evaluate
TAnoGan with 46 real-world time series datasets that cover a variety of
domains. Extensive experimental results show that TAnoGan performs better than
traditional and neural network models.
- Abstract(参考訳): 時系列データの異常検出は、製造、医療画像、サイバーセキュリティなど、多くの応用分野において直面する重要な問題である。
近年,GAN(Generative Adversarial Networks)が画像領域の生成と異常検出に注目されている。
本稿では,少数のデータポイントが利用可能な時系列の異常を検出するための新しいganベースの非教師なし手法であるtanoganを提案する。
さまざまな領域をカバーする46のリアルタイム時系列データセットを用いて,TAnoGanを評価する。
広範な実験結果から、タノガンは従来のニューラルネットワークモデルよりも優れた性能を示す。
関連論文リスト
- CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN [0.9065034043031667]
時系列データの異常検出は、製造、医療画像、サイバーセキュリティといった様々な領域で一般的な問題である。
近年,GAN(Generative Adversarial Networks)は時系列データの異常検出に有効であることが示されている。
本稿では,ALGAN(Adjusted-LSTM GAN)と呼ばれる新しいGANモデルを提案する。
論文 参考訳(メタデータ) (2023-08-13T02:17:19Z) - A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection [98.41798478488101]
時系列分析は、利用可能なデータに暗黙的な情報の富を解放するために不可欠である。
グラフニューラルネットワーク(GNN)の最近の進歩は、時系列解析のためのGNNベースのアプローチの急増につながっている。
この調査は、GNNベースの時系列研究に関する膨大な知識をまとめ、基礎、実践的応用、時系列分析のためのグラフニューラルネットワークの機会を強調します。
論文 参考訳(メタデータ) (2023-07-07T08:05:03Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
我々は,GANに基づく異常検出フレームワークDEGANを提案する。
これは、適切に構成された識別器(D)をスタンドアロンの異常予測器に訓練するための入力として、通常の時系列データにのみ依存する。
論文 参考訳(メタデータ) (2022-10-05T04:32:12Z) - On the Usage of Generative Models for Network Anomaly Detection in
Multivariate Time-Series [3.1790432590377242]
本稿では,時系列におけるネットワーク異常検出の新しい手法であるNet-GANを紹介する。
我々は、生成モデルの背後にある概念を利用して、Net-GANの補完的アプローチであるNet-VAEを考案する。
我々は,IoTセンサデータにおける異常検出,ネットワーク計測における侵入検出など,異なる監視シナリオにおけるNet-GANとNet-VAEを評価した。
論文 参考訳(メタデータ) (2020-10-16T10:22:25Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。