論文の概要: Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models
- arxiv url: http://arxiv.org/abs/2012.03864v1
- Date: Mon, 7 Dec 2020 17:14:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 09:12:09.448357
- Title: Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models
- Title(参考訳): 多言語会話エージェントモデルにおける言語間伝達学習手法の評価
- Authors: Lizhen Tan and Olga Golovneva
- Abstract要約: 自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
これらの多言語モデルが,言語固有のテストデータにまたがる単言語モデルと比較して,同等あるいは優れた性能に到達できることを示す。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent explosion in popularity of voice assistant devices, there is
a growing interest in making them available to user populations in additional
countries and languages. However, to provide the highest accuracy and best
performance for specific user populations, most existing voice assistant models
are developed individually for each region or language, which requires linear
investment of effort. In this paper, we propose a general multilingual model
framework for Natural Language Understanding (NLU) models, which can help
bootstrap new language models faster and reduce the amount of effort required
to develop each language separately. We explore how different deep learning
architectures affect multilingual NLU model performance. Our experimental
results show that these multilingual models can reach same or better
performance compared to monolingual models across language-specific test data
while require less effort in creating features and model maintenance.
- Abstract(参考訳): 近年、ボイスアシスタントデバイスの人気が高まっており、他の国や言語のユーザー層に利用できるようにすることへの関心が高まっている。
しかし、特定のユーザに対して最高の精度と最高のパフォーマンスを提供するため、既存の音声アシスタントモデルは各地域や言語ごとに個別に開発されており、これには線形投資が必要である。
本稿では,自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
異なるディープラーニングアーキテクチャが多言語nluモデルのパフォーマンスに与える影響について検討する。
実験結果から,これらの多言語モデルは,言語固有のテストデータ間での単言語モデルと同等あるいはそれ以上の性能が得られるが,機能作成やモデルメンテナンスの労力は少なくなることが示された。
関連論文リスト
- LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
本研究は、主に英語で訓練された大規模な言語モデルを低リソース言語に適応させることにより、代替的な解決策を探求する。
継続訓練,命令細調整,タスク特化細調整,語彙拡張など,さまざまな戦略を評価する。
その結果、継続学習は、難易度スコアに反映されるような言語理解を向上し、タスク固有のチューニングは、一般的に下流タスクのパフォーマンスを向上することを示した。
論文 参考訳(メタデータ) (2024-05-13T13:41:59Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models [110.10545153845051]
X-ELM(X-Langual Expert Language Models、X-ELM)は、X-ELMを異なる言語に専門化するプロセスである。
新しい専門家を反復的に追加し、破滅的な忘れをせずに新しい言語にX-ELMを適用する。
論文 参考訳(メタデータ) (2024-01-19T01:07:50Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Towards Developing a Multilingual and Code-Mixed Visual Question
Answering System by Knowledge Distillation [20.33235443471006]
本稿では,英語ビジョンモデル(教師)を,等しく効果的な多言語・コード混合モデル(学生)に拡張する知識蒸留手法を提案する。
また、大規模な多言語およびコード混合VQAデータセットを11の異なる言語セットアップで作成します。
実験結果と深部分析により,11種類の言語セットアップ上で,事前学習した言語ビジョンモデルに対して提案したVQAモデルの有効性が示された。
論文 参考訳(メタデータ) (2021-09-10T03:47:29Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Towards Fully Bilingual Deep Language Modeling [1.3455090151301572]
両言語のパフォーマンスを損なうことなく、2つの遠隔関連言語に対してバイリンガルモデルを事前学習することが可能かを検討する。
フィンランド英語のバイリンガルBERTモデルを作成し、対応するモノリンガルモデルを評価するために使用されるデータセットの性能を評価する。
我々のバイリンガルモデルは、GLUE上のGoogleのオリジナル英語BERTと同等に動作し、フィンランドのNLPタスクにおける単言語フィンランドBERTのパフォーマンスとほぼ一致します。
論文 参考訳(メタデータ) (2020-10-22T12:22:50Z) - Structure-Level Knowledge Distillation For Multilingual Sequence
Labeling [73.40368222437912]
本稿では,複数の単言語モデルの構造的知識を統一多言語モデル(学生)に蒸留することにより,単言語モデルと統一多言語モデルとのギャップを低減することを提案する。
25のデータセットを用いた4つの多言語タスクの実験により、我々のアプローチはいくつかの強いベースラインを上回り、ベースラインモデルと教師モデルの両方よりも強力なゼロショット一般化性を有することが示された。
論文 参考訳(メタデータ) (2020-04-08T07:14:01Z) - XPersona: Evaluating Multilingual Personalized Chatbot [76.00426517401894]
我々はペルソナ・チャットの多言語拡張(XPersona)を提案する。
我々のデータセットには、多言語パーソナライズされたエージェントの構築と評価のための英語以外の6言語でのペルソナ会話が含まれています。
論文 参考訳(メタデータ) (2020-03-17T07:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。