Machine Learning Approaches to Real Estate Market Prediction Problem: A
Case Study
- URL: http://arxiv.org/abs/2008.09922v1
- Date: Sat, 22 Aug 2020 22:28:58 GMT
- Title: Machine Learning Approaches to Real Estate Market Prediction Problem: A
Case Study
- Authors: Shashi Bhushan Jha, Vijay Pandey, Rajesh Kumar Jha, Radu F. Babiceanu
- Abstract summary: This work develops a property price classification model using a ten year actual dataset, from January 2010 to November 2019.
The developed model can facilitate real estate investors, mortgage lenders and financial institutions to make better informed decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Home sale prices are formed given the transaction actors economic interests,
which include government, real estate dealers, and the general public who buy
or sell properties. Generating an accurate property price prediction model is a
major challenge for the real estate market. This work develops a property price
classification model using a ten year actual dataset, from January 2010 to
November 2019. The real estate dataset is publicly available and was retrieved
from Volusia County Property Appraiser of Florida website. In addition,
socio-economic factors such as Gross Domestic Product, Consumer Price Index,
Producer Price Index, House Price Index, and Effective Federal Funds Rate are
collected and used in the prediction model. To solve this case study problem,
several powerful machine learning algorithms, namely, Logistic Regression,
Random Forest, Voting Classifier, and XGBoost, are employed. They are
integrated with target encoding to develop an accurate property sale price
prediction model with the aim to predict whether the closing sale price is
greater than or less than the listing sale price. To assess the performance of
the models, the accuracy, precision, recall, classification F1 score, and error
rate of the models are determined. Among the four studied machine learning
algorithms, XGBoost delivers superior results and robustness of the model
compared to other models. The developed model can facilitate real estate
investors, mortgage lenders and financial institutions to make better informed
decisions.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - An Optimal House Price Prediction Algorithm: XGBoost [0.0]
We use various machine learning techniques to predict house prices.
We identify the key factors that influence housing costs.
XGBoost is the best performing model for house price prediction.
arXiv Detail & Related papers (2024-02-06T15:36:06Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Predicting housing prices and analyzing real estate market in the
Chicago suburbs using Machine Learning [0.0]
Post-pandemic markets have experienced volatility in the Chicago suburb area, which have affected house prices greatly.
This study was done on the Naperville/Bolingbrook real estate market to predict property prices based on these housing attributes through machine learning models.
It was found that the XGBoost model performs the best in predicting house prices despite the additional volatility sponsored by post-pandemic conditions.
arXiv Detail & Related papers (2022-10-12T14:41:53Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z) - Towards robust and speculation-reduction real estate pricing models
based on a data-driven strategy [0.0]
We propose a data-driven real estate pricing model based on machine learning methods to estimate prices reducing human bias.
We test the model with 178,865 flats listings from Bogot'a, collected from 2016 to 2020.
Results show that the proposed state-of-the-art model is robust and accurate in estimating real estate prices.
arXiv Detail & Related papers (2020-11-26T15:54:07Z) - Lifelong Property Price Prediction: A Case Study for the Toronto Real
Estate Market [75.28009817291752]
We present Luce, the first life-long predictive model for automated property valuation.
Luce addresses two critical issues of property valuation: the lack of recent sold prices and the sparsity of house data.
We demonstrate the benefit of Luce by applying it to large, real-life datasets obtained from the Toronto real estate market.
arXiv Detail & Related papers (2020-08-12T07:32:16Z) - Housing Market Prediction Problem using Different Machine Learning
Algorithms: A Case Study [0.0]
The housing datasets of 62,723 records from January 2015 to November 2019 are obtained from Florida Volusia County Property Appraiser website.
The XGBoost algorithm performs superior to the other models to predict the housing price.
arXiv Detail & Related papers (2020-06-17T18:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.