Using ensemble methods of machine learning to predict real estate prices
- URL: http://arxiv.org/abs/2504.04303v1
- Date: Sat, 05 Apr 2025 23:53:38 GMT
- Title: Using ensemble methods of machine learning to predict real estate prices
- Authors: Oleh Pastukh, Viktor Khomyshyn,
- Abstract summary: This study helps to gain a deeper understanding of how effective and accurate ensemble machine learning methods are in predicting real estate values.<n>The results obtained in the work are quite accurate, as can be seen from the coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) calculated for each model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, machine learning (ML) techniques have become a powerful tool for improving the accuracy of predictions and decision-making. Machine learning technologies have begun to penetrate all areas, including the real estate sector. Correct forecasting of real estate value plays an important role in the buyer-seller chain, because it ensures reasonableness of price expectations based on the offers available in the market and helps to avoid financial risks for both parties of the transaction. Accurate forecasting is also important for real estate investors to make an informed decision on a specific property. This study helps to gain a deeper understanding of how effective and accurate ensemble machine learning methods are in predicting real estate values. The results obtained in the work are quite accurate, as can be seen from the coefficient of determination (R^2), root mean square error (RMSE) and mean absolute error (MAE) calculated for each model. The Gradient Boosting Regressor model provides the highest accuracy, the Extra Trees Regressor, Hist Gradient Boosting Regressor and Random Forest Regressor models give good results. In general, ensemble machine learning techniques can be effectively used to solve real estate valuation. This work forms ideas for future research, which consist in the preliminary processing of the data set by searching and extracting anomalous values, as well as the practical implementation of the obtained results.
Related papers
- Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies [0.0]
This paper presents a comprehensive study on stock price prediction, leveraging advanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy.<n>The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU)<n>Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies.
arXiv Detail & Related papers (2025-02-21T06:36:16Z) - A Comparative Study of Machine Learning Algorithms for Stock Price Prediction Using Insider Trading Data [0.0]
The research paper empirically investigates several machine learning algorithms to forecast stock prices depending on insider trading information.<n>This study examines the effectiveness of algorithms like decision trees, random forests, support vector machines (SVM) with different kernels, and K-Means Clustering.<n>The results of this paper aim to help financial analysts and investors in choosing strong algorithms to optimize investment strategies.
arXiv Detail & Related papers (2025-02-12T19:03:09Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Machine Learning Classification Methods and Portfolio Allocation: An
Examination of Market Efficiency [3.3343612552681945]
We design a novel framework to examine market efficiency through out-of-sample (OOS) predictability.
We frame the asset pricing problem as a machine learning classification problem and construct classification models to predict return states.
The prediction-based portfolios beat the market with significant OOS economic gains.
arXiv Detail & Related papers (2021-08-04T20:48:27Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Machine Learning Approaches to Real Estate Market Prediction Problem: A
Case Study [0.0]
This work develops a property price classification model using a ten year actual dataset, from January 2010 to November 2019.
The developed model can facilitate real estate investors, mortgage lenders and financial institutions to make better informed decisions.
arXiv Detail & Related papers (2020-08-22T22:28:58Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.