論文の概要: Fidelity-Controllable Extreme Image Compression with Generative
Adversarial Networks
- arxiv url: http://arxiv.org/abs/2008.10314v1
- Date: Mon, 24 Aug 2020 10:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 12:26:19.636038
- Title: Fidelity-Controllable Extreme Image Compression with Generative
Adversarial Networks
- Title(参考訳): 生成逆ネットワークを用いた忠実度制御可能な極端画像圧縮
- Authors: Shoma Iwai, Tomo Miyazaki, Yoshihiro Sugaya and Shinichiro Omachi
- Abstract要約: 本稿では,GANに基づく画像圧縮手法を提案する。
両欠点に対処するため,本手法では2段階のトレーニングとネットワークを採用している。
実験結果から,高品質な画像の再構成が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 10.036312061637764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a GAN-based image compression method working at extremely low
bitrates below 0.1bpp. Most existing learned image compression methods suffer
from blur at extremely low bitrates. Although GAN can help to reconstruct sharp
images, there are two drawbacks. First, GAN makes training unstable. Second,
the reconstructions often contain unpleasing noise or artifacts. To address
both of the drawbacks, our method adopts two-stage training and network
interpolation. The two-stage training is effective to stabilize the training.
Moreover, the network interpolation utilizes the models in both stages and
reduces undesirable noise and artifacts, while maintaining important edges.
Hence, we can control the trade-off between perceptual quality and fidelity
without re-training models. The experimental results show that our model can
reconstruct high quality images. Furthermore, our user study confirms that our
reconstructions are preferable to state-of-the-art GAN-based image compression
model. The code will be available.
- Abstract(参考訳): 0.1bpp以下の極低ビットレートで動作するGAN画像圧縮法を提案する。
既存の画像圧縮手法の多くは、非常に低ビットレートでぼやけている。
GANはシャープな画像の再構築に役立つが、2つの欠点がある。
まず、GANはトレーニングを不安定にする。
第二に、再建には音や工芸品が供給されないことが多い。
両欠点に対処するため,本手法では2段階のトレーニングとネットワーク補間を行う。
2段階の訓練は、トレーニングの安定化に有効である。
さらに、ネットワーク補間は両方の段階でモデルを利用し、重要なエッジを維持しながら、望ましくないノイズやアーティファクトを減らす。
したがって、モデルを再訓練することなく知覚品質と忠実さのトレードオフを制御できる。
実験の結果,本モデルは高品質画像を再現できることがわかった。
さらに,本研究は,現状のGAN画像圧縮モデルよりも再構築が望ましいことを示す。
コードは利用可能だ。
関連論文リスト
- Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates [47.47031054057152]
生成モデルはRS画像を極低ビットレートストリームに圧縮するために研究されている。
これらの生成モデルは、非常に低ビットレート画像圧縮の極めて不適切な性質のため、視覚的に可視な画像の再構成に苦慮している。
本研究では,高現実性再構築を実現するために,自然画像に先行した事前学習拡散モデルを用いた画像圧縮フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-03T14:29:54Z) - Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior [8.772652777234315]
本稿では,事前学習した拡散モデルの強力な生成能力を生かした,新しい2段階の極端画像圧縮フレームワークを提案する。
本手法は, 視覚的性能を極端に低め, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-29T16:02:38Z) - A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
本研究では,学習した画像圧縮モデルの敵攻撃に対する堅牢性について検討する。
簡単な画像変換関数をベースとした無訓練防御手法を提案する。
論文 参考訳(メタデータ) (2024-01-22T12:50:21Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
Invertible Activation Transformation (IAT) モジュールを提案する。
IATとQLevelは、画像圧縮モデルに、画像の忠実さを良く保ちながら、細かな可変レート制御能力を与える。
提案手法は,特に複数再符号化後に,最先端の可変レート画像圧縮法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-12T07:14:07Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
既存の学習画像圧縮モデルは畳み込みニューラルネットワーク(CNN)に基づいている。
本稿では,複数種類の注意機構が局所特徴学習に与える影響について検討し,より単純で効果的なウィンドウベースの局所的注意ブロックを提案する。
提案されたウィンドウベースのアテンションは非常に柔軟で、CNNとTransformerモデルを強化するためのプラグイン・アンド・プレイコンポーネントとして機能する可能性がある。
論文 参考訳(メタデータ) (2022-03-16T07:55:49Z) - Deep Artifact-Free Residual Network for Single Image Super-Resolution [0.2399911126932526]
本研究では,残差学習の利点と,地中構造像を目標として用いることの利点を活かしたDAFR(Deep Artifact-Free Residual)ネットワークを提案する。
我々のフレームワークは、高品質な画像再構成に必要な高周波情報を抽出するために、ディープモデルを用いている。
実験の結果,提案手法は既存の手法に比べて定量的,定性的な画像品質を実現することがわかった。
論文 参考訳(メタデータ) (2020-09-25T20:53:55Z) - GAN Compression: Efficient Architectures for Interactive Conditional
GANs [45.012173624111185]
最近のコンディショナル・ジェネレーティブ・アドバイサル・ネットワーク(cGAN)は、現代の認識CNNよりも1~2桁の計算集約性がある。
本稿では,cGANにおけるジェネレータの推論時間とモデルサイズを低減するための汎用圧縮フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-19T17:59:05Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
劣化画像から直接クリーンな画像生成装置を学習するために, ぼかし, ノイズ, 圧縮堅牢なGAN(BNCR-GAN)を提案する。
NR-GANにインスパイアされたBNCR-GANは、画像、ぼやけたカーネル、ノイズ、品質要素ジェネレータで構成される多重ジェネレータモデルを使用する。
CIFAR-10の大規模比較とFFHQの一般性解析によるBNCR-GANの有効性を実証する。
論文 参考訳(メタデータ) (2020-03-17T17:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。