論文の概要: What-If Motion Prediction for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2008.10587v1
- Date: Mon, 24 Aug 2020 17:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 09:16:09.617169
- Title: What-If Motion Prediction for Autonomous Driving
- Title(参考訳): 自律走行のためのwhat-ifモーション予測
- Authors: Siddhesh Khandelwal, William Qi, Jagjeet Singh, Andrew Hartnett, Deva
Ramanan
- Abstract要約: 生存可能なソリューションは、道路レーンのような静的な幾何学的文脈と、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
本稿では,解釈可能な幾何学的(アクター・レーン)と社会的(アクター・アクター)の関係を持つグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
- 参考スコア(独自算出の注目度): 58.338520347197765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the long-term future motion of road actors is a core challenge to
the deployment of safe autonomous vehicles (AVs). Viable solutions must account
for both the static geometric context, such as road lanes, and dynamic social
interactions arising from multiple actors. While recent deep architectures have
achieved state-of-the-art performance on distance-based forecasting metrics,
these approaches produce forecasts that are predicted without regard to the
AV's intended motion plan. In contrast, we propose a recurrent graph-based
attentional approach with interpretable geometric (actor-lane) and social
(actor-actor) relationships that supports the injection of counterfactual
geometric goals and social contexts. Our model can produce diverse predictions
conditioned on hypothetical or "what-if" road lanes and multi-actor
interactions. We show that such an approach could be used in the planning loop
to reason about unobserved causes or unlikely futures that are directly
relevant to the AV's intended route.
- Abstract(参考訳): 安全自動運転車(AV)の展開において、道路アクターの長期的な動きを予測することは、中核的な課題である。
実行可能な解決策は、道路レーンのような静的な幾何学的コンテキストと、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
最近のディープアーキテクチャは距離ベースの予測メトリクスで最先端のパフォーマンスを達成しているが、これらのアプローチはavの意図した動作計画によらず予測される予測を生成する。
対照的に, 解釈可能な幾何学的(アクタレーン)と, 反事実的幾何学的目標と社会的文脈の注入を支援する社会的(アクタ-アクタ)関係を用いた, 繰り返しグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
このようなアプローチは計画ループにおいて、AVの意図する経路に直接関係する観測されていない原因や、ありそうもない未来を推論するために使用できることを示す。
関連論文リスト
- PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
将来の車両軌道予測のためのトランスフォーマーモデルであるLatentFormerを提案する。
提案手法をnuScenesベンチマークデータセット上で評価し,提案手法が最先端性能を実現し,トラジェクトリ指標を最大40%向上することを示す。
論文 参考訳(メタデータ) (2022-03-03T17:44:58Z) - Scene Transformer: A unified multi-task model for behavior prediction
and planning [42.758178896204036]
実世界の運転環境における全てのエージェントの行動予測モデルを定式化する。
近年の言語モデリングアプローチにインスパイアされた我々は、マスキング戦略をモデルに対するクエリとして使用しています。
我々は,行動予測のための自律走行データセットに対するアプローチを評価し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-06-15T20:20:44Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
我々は3次元物体の検出と将来の動きを自動運転の文脈で予測する問題に取り組む。
空間的・時間的依存関係を捉えるために,新しいトランスフォーマーアーキテクチャを用いたリカレントニューラルネットワークを提案する。
私たちのモデルはエンドツーエンドでトレーニングでき、リアルタイムで実行されます。
論文 参考訳(メタデータ) (2020-08-13T14:30:12Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
本稿では,エージェントの一般的な動きだけでなく,意味地図から関連する道路特徴を抽出する学習モデルを提案する。
我々は,道路境界を考慮した将来の動きを予測できるだけでなく,当初の訓練よりも長い時間的地平線の軌道を効果的かつ正確に予測できることを示した。
論文 参考訳(メタデータ) (2020-06-09T09:52:44Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。