論文の概要: Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
applied to Out-of-Distribution Segmentation
- arxiv url: http://arxiv.org/abs/2303.06920v2
- Date: Wed, 17 Jan 2024 08:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 21:50:32.887400
- Title: Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
applied to Out-of-Distribution Segmentation
- Title(参考訳): 分布外セグメンテーションに応用した畳み込みニューラルネットワークの画素ワイズ勾配不確かさ
- Authors: Kira Maag and Tobias Riedlinger
- Abstract要約: 本稿では,推定時に効率よく計算できる画素単位の損失勾配から不確実点を求める手法を提案する。
本実験は,提案手法が誤った画素分類を識別し,無視可能な計算オーバーヘッドで予測品質を推定する能力を示す。
- 参考スコア(独自算出の注目度): 0.43512163406552007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep neural networks have defined the state-of-the-art in
semantic segmentation where their predictions are constrained to a predefined
set of semantic classes. They are to be deployed in applications such as
automated driving, although their categorically confined expressive power runs
contrary to such open world scenarios. Thus, the detection and segmentation of
objects from outside their predefined semantic space, i.e., out-of-distribution
(OoD) objects, is of highest interest. Since uncertainty estimation methods
like softmax entropy or Bayesian models are sensitive to erroneous predictions,
these methods are a natural baseline for OoD detection. Here, we present a
method for obtaining uncertainty scores from pixel-wise loss gradients which
can be computed efficiently during inference. Our approach is simple to
implement for a large class of models, does not require any additional training
or auxiliary data and can be readily used on pre-trained segmentation models.
Our experiments show the ability of our method to identify wrong pixel
classifications and to estimate prediction quality at negligible computational
overhead. In particular, we observe superior performance in terms of OoD
segmentation to comparable baselines on the SegmentMeIfYouCan benchmark,
clearly outperforming other methods.
- Abstract(参考訳): 近年、ディープニューラルネットワークはセマンティックセグメンテーションの最先端を定義しており、予測は事前に定義されたセマンティクスクラスに制限されている。
それらは自動運転のようなアプリケーションにデプロイされるが、そのカテゴリ的に制限された表現力はそのようなオープンワールドのシナリオとは対照的に実行される。
したがって、事前に定義されたセマンティック空間外、すなわちOoD(out-of-distribution)オブジェクトの検出とセグメンテーションが最も関心を持つ。
ソフトマックスエントロピーやベイズモデルのような不確実性推定法は誤った予測に敏感であるため、これらの手法はood検出の自然なベースラインである。
本稿では,推定中に効率的に計算できる画素損失勾配から不確かさスコアを得る手法を提案する。
我々のアプローチは、大規模なモデルのクラスの実装が簡単であり、追加のトレーニングや補助データを必要としないため、事前訓練されたセグメンテーションモデルで容易に利用できる。
本実験は,提案手法が誤った画素分類を識別し,無視可能な計算オーバーヘッドで予測品質を推定する能力を示す。
特に,SegmentMeIfYouCanベンチマークのOoDセグメンテーションにおいて,OoDセグメンテーションの点で優れた性能を示し,他の手法よりも明らかに優れている。
関連論文リスト
- Anatomically-aware Uncertainty for Semi-supervised Image Segmentation [12.175556059523863]
半教師付き学習は、ラベルなしデータを活用することにより、画像セグメンテーションのための大きなピクセル単位のラベル付きデータセットの必要性を緩和する。
不確実性推定法は、トレーニングの各ステップで計算しなければならないモデル予測からの複数の推論に依存する。
本研究では,セグメント化マスクのグローバル情報を活用することによってセグメント化の不確実性を推定する手法を提案する。
論文 参考訳(メタデータ) (2023-10-24T18:03:07Z) - NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
半教師付きセマンティックセグメンテーションでは、トレーニング時にピクセルワイズラベルをラベル付けされていない画像に割り当てる。
モデルによるクラスワイズ確率分布から各画素の擬似ラベルを予測し,半教師付きセマンティックセマンティックセマンティクスへのアプローチ
本研究では,NPを半教師付きセマンティックセグメンテーションに適応させることにより一歩前進し,NP-SemiSegと呼ばれる新しいモデルを実現する。
論文 参考訳(メタデータ) (2023-08-05T12:42:15Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Uncertainty Aware Proposal Segmentation for Unknown Object Detection [13.249453757295083]
本稿では,セマンティックセグメンテーションモデルのさらなる予測と信頼性の定量化を提案する。
本研究では,地域提案ネットワーク(RPN)が生成するオブジェクト提案を用いて,セマンティックセグメンテーションの精度評価を行う。
拡張オブジェクトの提案は、未知のオブジェクトカテゴリと未知のオブジェクトカテゴリの分類器をトレーニングするために使用される。
論文 参考訳(メタデータ) (2021-11-25T01:53:05Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
提案手法は,提案不要なインスタンスセグメンテーションモデルにおけるモデル独立不確実性推定値を得るための汎用的な手法である。
本手法は,BBBC010 C. elegansデータセットを用いて評価し,競合性能を示す。
論文 参考訳(メタデータ) (2020-08-24T19:51:48Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
識別型分類器における確率のパラメトリゼーションが不確実性推定に与える影響について検討する。
画像分類タスクのキャリブレーションを改善するために, 1-vs-all の定式化が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-10T01:55:02Z) - Fine-grained Uncertainty Modeling in Neural Networks [0.0]
本稿では,ニューラルネットワークにおける分布外点検出のための新しい手法を提案する。
我々の手法は、NNの過度な判断を正し、外れ点を検知し、上位2つの予測の間で重要な点が不確実であるときに「私は知らない」と言うことを学習する。
副作用として, 本手法は, 追加訓練を必要とせず, 敵の攻撃を防ぐのに有効である。
論文 参考訳(メタデータ) (2020-02-11T05:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。