論文の概要: Path Dependent Structural Equation Models
- arxiv url: http://arxiv.org/abs/2008.10706v2
- Date: Tue, 10 Nov 2020 04:35:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 12:44:43.367696
- Title: Path Dependent Structural Equation Models
- Title(参考訳): 経路依存構造方程式モデル
- Authors: Ranjani Srinivasan, Jaron Lee, Rohit Bhattacharya, Narges Ahmidi, Ilya
Shpitser
- Abstract要約: 因果推論が因果図形モデルでどのように実行されるかを示す。
外科手術のシミュレーションやデータに因果推論が適用可能であることを示す。
- 参考スコア(独自算出の注目度): 7.437224586066945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal analyses of longitudinal data generally assume that the qualitative
causal structure relating variables remains invariant over time. In structured
systems that transition between qualitatively different states in discrete time
steps, such an approach is deficient on two fronts. First, time-varying
variables may have state-specific causal relationships that need to be
captured. Second, an intervention can result in state transitions downstream of
the intervention different from those actually observed in the data. In other
words, interventions may counterfactually alter the subsequent temporal
evolution of the system. We introduce a generalization of causal graphical
models, Path Dependent Structural Equation Models (PDSEMs), that can describe
such systems. We show how causal inference may be performed in such models and
illustrate its use in simulations and data obtained from a septoplasty surgical
procedure.
- Abstract(参考訳): 縦断データの因果分析は一般に、変数に関連する定性的因果構造が時間とともに不変であると仮定する。
離散時間ステップで定性的に異なる状態間を遷移する構造化システムでは、そのようなアプローチは2つのフロントで不十分である。
まず、時間変化変数は、キャプチャが必要な状態固有の因果関係を持つ。
第二に、介入は、データで実際に観察されたものと異なる介入の下流の状態遷移をもたらす。
言い換えれば、介入はその後のシステムの時間的進化を事実上変える可能性がある。
このようなシステムを記述するための因果的グラフィカルモデルであるパス依存構造方程式モデル(pdsems)の一般化を提案する。
このようなモデルでどのように因果推論を行うかを示し, 外科手術で得られたシミュレーションやデータについて述べる。
関連論文リスト
- Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
本稿では,隠れた共同設立者を組み込んだ線形ODEシステムにおける識別可能性の体系的解析について述べる。
最初のケースでは、潜伏した共同設立者は因果関係を示さないが、その進化は特定の形態に固執する。
その後、この分析を、隠れた共同創設者が因果依存性を示すシナリオにまで拡張する。
論文 参考訳(メタデータ) (2024-10-29T10:15:56Z) - Linear causal disentanglement via higher-order cumulants [0.0]
複数の文脈におけるデータへのアクセスを前提として,線形因果不整合の識別可能性について検討した。
各潜伏変数に対する1つの完全な介入が十分であり、完全な介入の下でパラメータを復元するのに必要となる最悪の場合を示す。
論文 参考訳(メタデータ) (2024-07-05T15:53:16Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Linear Causal Disentanglement via Interventions [8.444187296409051]
因果解離は因果モデルを通して相互に関連する潜伏変数を含むデータの表現を求める。
線形潜在因果モデルの線形変換である観測変数について検討した。
論文 参考訳(メタデータ) (2022-11-29T18:43:42Z) - Amortised Inference in Structured Generative Models with Explaining Away [16.92791301062903]
我々は、複数の変数に対して構造化因子を組み込むために、償却変分推論の出力を拡張した。
パラメータ化された因子は、複雑な図形構造における変分メッセージパッシングと効率的に結合可能であることを示す。
次に、構造化されたモデルと、自由に動くげっ歯類の海馬からの高次元神経スパイク時系列を適合させる。
論文 参考訳(メタデータ) (2022-09-12T12:52:15Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
本稿では、時間変化の時間依存性パターンをキャプチャする問題に対処するために、従来の逐次モデリング手法を再検討する。
我々は、過去のフレームへの依存を動的に推定するHMMの異なる定式化を提案する。
フォワード・バックワード・アルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-13T23:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。