Towards End-to-end Car License Plate Location and Recognition in
Unconstrained Scenarios
- URL: http://arxiv.org/abs/2008.10916v2
- Date: Mon, 11 Jul 2022 04:50:00 GMT
- Title: Towards End-to-end Car License Plate Location and Recognition in
Unconstrained Scenarios
- Authors: Shuxin Qin and Sijiang Liu
- Abstract summary: We present an efficient framework to solve the license plate detection and recognition tasks simultaneously.
It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time.
Experimental results indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from the rapid development of convolutional neural networks, the
performance of car license plate detection and recognition has been largely
improved. Nonetheless, most existing methods solve detection and recognition
problems separately, and focus on specific scenarios, which hinders the
deployment for real-world applications. To overcome these challenges, we
present an efficient and accurate framework to solve the license plate
detection and recognition tasks simultaneously. It is a lightweight and unified
deep neural network, that can be optimized end-to-end and work in real-time.
Specifically, for unconstrained scenarios, an anchor-free method is adopted to
efficiently detect the bounding box and four corners of a license plate, which
are used to extract and rectify the target region features. Then, a novel
convolutional neural network branch is designed to further extract features of
characters without segmentation. Finally, the recognition task is treated as
sequence labeling problems, which are solved by Connectionist Temporal
Classification (CTC) directly. Several public datasets including images
collected from different scenarios under various conditions are chosen for
evaluation. Experimental results indicate that the proposed method
significantly outperforms the previous state-of-the-art methods in both speed
and precision.
Related papers
- Bridging the Gap Between End-to-End and Two-Step Text Spotting [88.14552991115207]
Bridging Text Spotting is a novel approach that resolves the error accumulation and suboptimal performance issues in two-step methods.
We demonstrate the effectiveness of the proposed method through extensive experiments.
arXiv Detail & Related papers (2024-04-06T13:14:04Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
We propose a simple pretext task that provides an effective pre-training for the region proposal network (RPN)
In comparison with multi-stage detectors without RPN pre-training, our approach is able to consistently improve downstream task performance.
arXiv Detail & Related papers (2022-11-16T16:28:18Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDAR-based localization and mapping is one of the core components in many modern robotic systems.
This work proposes a neural network-based estimation approach for detecting (non-)localizability during robot operation.
arXiv Detail & Related papers (2022-03-11T01:12:00Z) - End-to-End High Accuracy License Plate Recognition Based on Depthwise
Separable Convolution Networks [0.0]
We propose a novel segmentation-free framework for license plate recognition and introduce NP-ALPR dataset.
The proposed network model consists of the latest deep learning methods and state-of-the-art ideas, and benefits from a novel network architecture.
We evaluate the effectiveness of the proposed method on three different datasets and show a recognition accuracy of over 99% and over 70 fps.
arXiv Detail & Related papers (2022-02-21T14:45:03Z) - QuickBrowser: A Unified Model to Detect and Read Simple Object in
Real-time [3.098115480186737]
This work aims to solve this detect-and-read problem in a lightweight way by integrating multi-digit recognition into a one-stage object detection model.
Our choice of backbones and modifications in architecture, loss function, data augmentation and training make the method robust, efficient and speedy.
arXiv Detail & Related papers (2021-02-15T05:47:40Z) - Rethinking and Designing a High-performing Automatic License Plate
Recognition Approach [16.66787965777127]
We propose a novel automatic license plate recognition (ALPR) approach, termed VSNet.
VSNet includes two CNNs, i.e., VertexNet for license plate detection and SCR-Net for license plate recognition, which is integrated in a resampling-based cascaded manner.
Experimental results show that the proposed VSNet outperforms state-of-the-art methods by more than 50% relative improvement on error rate.
arXiv Detail & Related papers (2020-11-30T16:03:57Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
Few-shot learning is attracting much attention to mitigate data scarcity.
We present a discriminative nearest neighbor classification with deep self-attention.
We propose to boost the discriminative ability by transferring a natural language inference (NLI) model.
arXiv Detail & Related papers (2020-10-25T00:39:32Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
We propose the first framework (UCNet) to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose probabilistic RGB-D saliency detection network.
arXiv Detail & Related papers (2020-04-13T04:12:59Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
Semi-supervised Generative Adversarial Networks (GAN)-based methods have been gaining popularity in anomaly detection task recently.
A novel adversarial dual autoencoder network is proposed, in which the underlying structure of training data is captured in latent feature space.
Experiments show that our model achieves the state-of-the-art results on MNIST and CIFAR10 datasets as well as GTSRB stop signs dataset.
arXiv Detail & Related papers (2020-02-05T02:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.