論文の概要: Learning Robust Node Representations on Graphs
- arxiv url: http://arxiv.org/abs/2008.11416v2
- Date: Sun, 6 Sep 2020 03:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 21:03:12.180315
- Title: Learning Robust Node Representations on Graphs
- Title(参考訳): グラフによるロバストノード表現の学習
- Authors: Xu Chen and Ya Zhang and Ivor Tsang and Yuangang Pan
- Abstract要約: 本稿では,ノード表現の安定性に加えて,滑らかさや識別性についても紹介する。
我々は、教師なしの方法で頑健なノード表現を学習する、コントラストグラフニューラルネットワーク(CGNN)と呼ばれる新しい手法を開発した。
具体的には、CGNNは、既存のGNNモデルとの滑らかさを保ちながら、対照的な学習目標による安定性と識別性を維持している。
- 参考スコア(独自算出の注目度): 21.669829045721556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNN), as a popular methodology for node representation
learning on graphs, currently mainly focus on preserving the smoothness and
identifiability of node representations. A robust node representation on graphs
should further hold the stability property which means a node representation is
resistant to slight perturbations on the input. In this paper, we introduce the
stability of node representations in addition to the smoothness and
identifiability, and develop a novel method called contrastive graph neural
networks (CGNN) that learns robust node representations in an unsupervised
manner. Specifically, CGNN maintains the stability and identifiability by a
contrastive learning objective, while preserving the smoothness with existing
GNN models. Furthermore, the proposed method is a generic framework that can be
equipped with many other backbone models (e.g. GCN, GraphSage and GAT).
Extensive experiments on four benchmarks under both transductive and inductive
learning setups demonstrate the effectiveness of our method in comparison with
recent supervised and unsupervised models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ上のノード表現学習の一般的な方法論として、現在主にノード表現の滑らかさと識別性を保存することに焦点を当てている。
グラフ上のロバストなノード表現は、入力に対するわずかな摂動に対してノード表現が耐性を持つという安定性特性をさらに保持する必要がある。
本稿では,ノード表現のスムーズさと識別性に加えて,ノード表現の安定性を導入し,教師なしで頑健なノード表現を学習するコントラストグラフニューラルネットワーク(CGNN)と呼ばれる新しい手法を開発した。
具体的には、CGNNは、既存のGNNモデルとの滑らかさを保ちながら、対照的な学習目標による安定性と識別性を維持している。
さらに、提案手法は、他の多くのバックボーンモデル(GCN、GraphSage、GATなど)を装備できる汎用フレームワークである。
帰納的および帰納的な学習環境下での4つのベンチマーク実験により,近年の教師なしモデルと比べ,本手法の有効性が示された。
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN [36.045702771828736]
グラフニューラルネットワーク(GNN)は、グラフデータ上でのタスクの繁栄に成功している。
近年の研究では、グラフ構造を悪質に修正することで、攻撃者がGNNの性能を壊滅的に低下させることができることが示されている。
グラフ構造を最適化するための教師なしパイプラインSTABLEを提案する。
論文 参考訳(メタデータ) (2022-06-30T10:02:32Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
本研究では,グラフの半教師付き手法であるGraFNを提案し,同一クラスに属するノードをグループ化する。
GraFNはグラフ全体からラベル付きノードとアンカーノードからランダムにノードをサンプリングする。
実世界のグラフ上のノード分類において,GraFNが半教師付き手法と自己教師型手法のどちらよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T08:22:30Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
ネットワークを新たに入力したユーザなど,エッジレスノードを埋め込む問題について検討する。
我々は,非教師付き帰納学習により,エッジレスノードに対してもノード埋め込みを生成可能な新しいフレームワークであるEdgeless-GNNを提案する。
論文 参考訳(メタデータ) (2021-04-12T06:37:31Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。