論文の概要: Learning Node Representations against Perturbations
- arxiv url: http://arxiv.org/abs/2008.11416v3
- Date: Fri, 5 May 2023 14:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 18:19:07.167430
- Title: Learning Node Representations against Perturbations
- Title(参考訳): 摂動に対するノード表現の学習
- Authors: Xu Chen and Yuangang Pan and Ivor Tsang and Ya Zhang
- Abstract要約: 近年のグラフニューラルネットワーク (GNN) はノード表現学習において顕著な性能を発揮している。
GNNにおける摂動に対するノード表現の学習方法について検討する。
本稿では,信頼度の高いノード表現を教師なしで学習するSIGNNAP(Stable-Identifiability GNN Against Perturbations)を提案する。
- 参考スコア(独自算出の注目度): 21.66982904572156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent graph neural networks (GNN) has achieved remarkable performance in
node representation learning. One key factor of GNN's success is the
\emph{smoothness} property on node representations. Despite this, most GNN
models are fragile to the perturbations on graph inputs and could learn
unreliable node representations. In this paper, we study how to learn node
representations against perturbations in GNN. Specifically, we consider that a
node representation should remain stable under slight perturbations on the
input, and node representations from different structures should be
identifiable, which two are termed as the \emph{stability} and
\emph{identifiability} on node representations, respectively. To this end, we
propose a novel model called Stability-Identifiability GNN Against
Perturbations (SIGNNAP) that learns reliable node representations in an
unsupervised manner. SIGNNAP formalizes the \emph{stability} and
\emph{identifiability} by a contrastive objective and preserves the
\emph{smoothness} with existing GNN backbones. The proposed method is a generic
framework that can be equipped with many other backbone models (e.g. GCN,
GraphSage and GAT). Extensive experiments on six benchmarks under both
transductive and inductive learning setups of node classification demonstrate
the effectiveness of our method. Codes and data are available
online:~\url{https://github.com/xuChenSJTU/SIGNNAP-master-online}
- Abstract(参考訳): 近年のグラフニューラルネットワーク(GNN)はノード表現学習において顕著な性能を発揮している。
GNNの成功の重要な要因の1つは、ノード表現上の \emph{smoothness} プロパティである。
しかし、ほとんどのGNNモデルはグラフ入力の摂動に脆弱であり、信頼できないノード表現を学習することができる。
本稿では,GNNにおける摂動に対するノード表現の学習方法について検討する。
具体的には、入力に対するわずかな摂動の下でノード表現は安定であり、異なる構造からのノード表現は識別可能であり、2つはノード表現でそれぞれ \emph{stability} と \emph{identifiability} と呼ばれる。
そこで本研究では,信頼度の高いノード表現を教師なしで学習するSIGNNAP(Stable-Identifiability GNN Against Perturbations)を提案する。
SIGNNAPは、対照的な目的によって \emph{stability} と \emph{identifiability} を形式化し、既存のGNNバックボーンで \emph{smoothness} を保存する。
提案手法は,多数のバックボーンモデル(GCN, GraphSage, GATなど)を備えた汎用フレームワークである。
ノード分類の帰納的および帰納的学習環境下での6つのベンチマーク実験により,本手法の有効性が示された。
コードとデータはオンラインで入手できる:~\url{https://github.com/xuchensjtu/signnap-master-online}
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN [36.045702771828736]
グラフニューラルネットワーク(GNN)は、グラフデータ上でのタスクの繁栄に成功している。
近年の研究では、グラフ構造を悪質に修正することで、攻撃者がGNNの性能を壊滅的に低下させることができることが示されている。
グラフ構造を最適化するための教師なしパイプラインSTABLEを提案する。
論文 参考訳(メタデータ) (2022-06-30T10:02:32Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
本研究では,グラフの半教師付き手法であるGraFNを提案し,同一クラスに属するノードをグループ化する。
GraFNはグラフ全体からラベル付きノードとアンカーノードからランダムにノードをサンプリングする。
実世界のグラフ上のノード分類において,GraFNが半教師付き手法と自己教師型手法のどちらよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T08:22:30Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
ネットワークを新たに入力したユーザなど,エッジレスノードを埋め込む問題について検討する。
我々は,非教師付き帰納学習により,エッジレスノードに対してもノード埋め込みを生成可能な新しいフレームワークであるEdgeless-GNNを提案する。
論文 参考訳(メタデータ) (2021-04-12T06:37:31Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。