論文の概要: Building a large synthetic population from Australian census data
- arxiv url: http://arxiv.org/abs/2008.11660v1
- Date: Tue, 18 Aug 2020 05:38:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 22:38:35.344820
- Title: Building a large synthetic population from Australian census data
- Title(参考訳): オーストラリアの国勢調査データによる大規模人工人口の構築
- Authors: Bhagya N. Wickramasinghe, Dhirendra Singh and Lin Padgham
- Abstract要約: 本稿では,オーストラリアにおける人口統計データから,メルボルン大都市圏に適用した人工人口の創出について述べる。
我々は,集団合成における標本のないアプローチを用いて,元の個体群から分離した標本に依存しない。
我々のアルゴリズムは、現代のコンピュータで3分以内に、180万世帯の450万人からなるメルボルンの合成人口を作り出すことができる。
- 参考スコア(独自算出の注目度): 2.707154152696381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present work on creating a synthetic population from census data for
Australia, applied to the greater Melbourne region. We use a sample-free
approach to population synthesis that does not rely on a disaggregate sample
from the original population. The inputs for our algorithm are joint marginal
distributions from census of desired person-level and household-level
attributes, and outputs are a set of comma-separated-value (.csv) files
containing the full synthetic population of unique individuals in households;
with age, gender, relationship status, household type, and size, matched to
census data. Our algorithm is efficient in that it can create the synthetic
population for Melbourne comprising 4.5 million persons in 1.8 million
households within three minutes on a modern computer. Code for the algorithm is
hosted on GitHub.
- Abstract(参考訳): 本研究は,オーストラリアの国勢調査データから,メルボルン大都市圏に適用した人工人口の創出に向けた研究である。
個体群から分離した標本に依存しない個体群合成にサンプルフリーアプローチを用いる。
本アルゴリズムの入力は,所望の個人レベルおよび世帯レベルの属性の国勢調査による共同マージン分布であり,アウトプットは,世帯内の独特な個体の完全な合成人口を含むコンマ分離値(.csv)ファイルの集合であり,年齢,性別,関係状態,世帯種別,サイズは国勢調査データに一致している。
現代のコンピュータで3分以内に180万世帯の450万人からなるメルボルンにおける合成人口を作成できるアルゴリズムは効率的である。
アルゴリズムのコードはGitHubにホストされている。
関連論文リスト
- A Deep Generative Framework for Joint Households and Individuals Population Synthesis [0.562479170374811]
世帯・個人・個人・個人関係を持つ合成集団を創出するための深い生成枠組みを提案する。
米国デラウェア州での申請の結果は、生成された家庭内レコードのリアリズムを確実にする能力を示している。
論文 参考訳(メタデータ) (2024-06-30T23:01:58Z) - Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown [50.40020716418472]
本研究では、TopDownアルゴリズムとプライベート合成データ生成を比較し、クエリの複雑さによる精度への影響を判定する。
この結果から,TopDownアルゴリズムは,分散クエリに対して,評価したどの合成データ手法よりもはるかに優れたプライバシー-忠実トレードオフを実現することがわかった。
論文 参考訳(メタデータ) (2024-01-31T17:38:34Z) - Synthpop++: A Hybrid Framework for Generating A Country-scale Synthetic Population [0.680303951699936]
人口調査は費用がかかり、時間がかかり、プライバシーの懸念も高まる可能性がある。
SynthPop++を導入し、複数の実世界のサーベイからのデータを組み合わせて、実スケールの合成人口を生成する。
実験の結果,インドにおける様々な行政単位の人口を人工的にシミュレートできることが示唆された。
論文 参考訳(メタデータ) (2023-04-24T17:27:56Z) - Synthcity: facilitating innovative use cases of synthetic data in
different data modalities [86.52703093858631]
Synthcityは、MLフェアネス、プライバシ、拡張における合成データの革新的なユースケースのための、オープンソースのソフトウェアパッケージである。
Synthcityは、実践者に対して、合成データにおける最先端の研究とツールへの単一のアクセスポイントを提供する。
論文 参考訳(メタデータ) (2023-01-18T14:49:54Z) - Generating Synthetic Population [0.680303951699936]
インドのような国において,様々な行政レベルで合成人口を生成する方法を提案する。
この人工個体群は、インド国勢調査2011, IHDS-II, NSS-68th Round, GPWなどの調査データに応用された機械学習と統計手法を用いて作成されている。
論文 参考訳(メタデータ) (2022-09-20T19:31:39Z) - So2Sat POP -- A Curated Benchmark Data Set for Population Estimation
from Space on a Continental Scale [11.38584315242023]
欧州98都市における人口推定のための包括的データセットを提供する。
データセットは、デジタル標高モデル、地域気候帯、土地利用率、夜間光とマルチスペクトルセンチネル2画像の組み合わせ、およびOpen Street Mapイニシアチブのデータから構成される。
論文 参考訳(メタデータ) (2022-04-07T07:30:43Z) - Sketch and Scale: Geo-distributed tSNE and UMAP [75.44887265789056]
地理的に分散したデータセット上で機械学習分析を実行することは、急速に発生する問題である。
私たちはSketch and Scale(SnS)という新しいフレームワークを紹介します。
これはCount Sketchデータ構造を利用して、エッジノード上のデータを圧縮し、マスターノード上の縮小サイズスケッチを集約し、サマリ上でバニラtSNEまたはUMAPを実行する。
我々は、この技術が完全に並列で、線形に時間にスケールし、メモリに対数的に分散し、通信し、世界中の複数のデータセンターにまたがる数百万、数十億のデータポイントでデータセットを解析できることを示す。
論文 参考訳(メタデータ) (2020-11-11T22:32:21Z) - A deep learning classifier for local ancestry inference [63.8376359764052]
局所祖先推論は、個人のゲノムの各セグメントの祖先を特定する。
我々は,エンコーダ・デコーダアーキテクチャを備えた深層畳み込みニューラルネットワークを用いた新しいLAIツールを開発した。
我々は,既存のゴールド標準ツール RFMix とほぼ同等の精度で,ゼロショットタスクとしてアドミキシングを学習できることを実証した。
論文 参考訳(メタデータ) (2020-11-04T00:42:01Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
国勢調査局(Census Bureaus)は、個人に関する機密情報を明らかにすることなく、大人口に関する社会経済的データをまとめて公開することに興味を持っている。
最近の出来事では、これらの組織が直面しているプライバシー上の課題がいくつか特定されている。
本稿では,階層的な個人数を解放する新たな差分プライバシ機構を提案する。
論文 参考訳(メタデータ) (2020-06-28T18:19:55Z) - Magnify Your Population: Statistical Downscaling to Augment the Spatial
Resolution of Socioeconomic Census Data [48.7576911714538]
重要社会経済的属性の詳細な推定を導出する新しい統計的ダウンスケーリング手法を提案する。
選択された社会経済変数ごとに、ランダムフォレストモデルが元の国勢調査単位に基づいて訓練され、その後、微細なグリッド化された予測を生成するために使用される。
本研究では,この手法を米国の国勢調査データに適用し,ブロック群レベルで選択された社会経済変数を,300の空間分解能のグリッドにダウンスケールする。
論文 参考訳(メタデータ) (2020-06-23T16:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。