Bayesian Force Fields from Active Learning for Simulation of
Inter-Dimensional Transformation of Stanene
- URL: http://arxiv.org/abs/2008.11796v2
- Date: Thu, 18 Feb 2021 19:16:04 GMT
- Title: Bayesian Force Fields from Active Learning for Simulation of
Inter-Dimensional Transformation of Stanene
- Authors: Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti and Boris
Kozinsky
- Abstract summary: We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels.
This allows for automated active learning of models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation.
- Score: 3.708456605408296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a way to dramatically accelerate Gaussian process models for
interatomic force fields based on many-body kernels by mapping both forces and
uncertainties onto functions of low-dimensional features. This allows for
automated active learning of models combining near-quantum accuracy, built-in
uncertainty, and constant cost of evaluation that is comparable to classical
analytical models, capable of simulating millions of atoms. Using this
approach, we perform large scale molecular dynamics simulations of the
stability of the stanene monolayer. We discover an unusual phase transformation
mechanism of 2D stanene, where ripples lead to nucleation of bilayer defects,
densification into a disordered multilayer structure, followed by formation of
bulk liquid at high temperature or nucleation and growth of the 3D bcc crystal
at low temperature. The presented method opens possibilities for rapid
development of fast accurate uncertainty-aware models for simulating long-time
large-scale dynamics of complex materials.
Related papers
- Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Uncertainty estimation for molecular dynamics and sampling [0.0]
Machine learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations.
It is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during the training of the model.
We present examples covering different types of structural and thermodynamic properties, and systems as diverse as water and liquid gallium.
arXiv Detail & Related papers (2020-11-10T00:07:50Z) - Molecular Latent Space Simulators [8.274472944075713]
We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories.
We demonstrate the approach in an application to Trp-protein to produce novel ultra-long synthetic folding trajectories.
arXiv Detail & Related papers (2020-07-01T20:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.