Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition
- URL: http://arxiv.org/abs/2008.12319v1
- Date: Thu, 27 Aug 2020 18:21:46 GMT
- Title: Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition
- Authors: Joshua Hanson, Pavel Bochev, Biliana Paskaleva
- Abstract summary: Radiation-induced photocurrent in semiconductor devices can be simulated using complex physics-based models.
It is computationally infeasible to evaluate detailed models for multiple individual circuit elements.
We show a procedure for learning compact delayed photocurrent models that are efficient enough to implement in large-scale circuit simulations.
- Score: 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiation-induced photocurrent in semiconductor devices can be simulated
using complex physics-based models, which are accurate, but computationally
expensive. This presents a challenge for implementing device characteristics in
high-level circuit simulations where it is computationally infeasible to
evaluate detailed models for multiple individual circuit elements. In this work
we demonstrate a procedure for learning compact delayed photocurrent models
that are efficient enough to implement in large-scale circuit simulations, but
remain faithful to the underlying physics. Our approach utilizes Dynamic Mode
Decomposition (DMD), a system identification technique for learning reduced
order discrete-time dynamical systems from time series data based on singular
value decomposition. To obtain physics-aware device models, we simulate the
excess carrier density induced by radiation pulses by solving numerically the
Ambipolar Diffusion Equation, then use the simulated internal state as training
data for the DMD algorithm. Our results show that the significantly reduced
order delayed photocurrent models obtained via this method accurately
approximate the dynamics of the internal excess carrier density -- which can be
used to calculate the induced current at the device boundaries -- while
remaining compact enough to incorporate into larger circuit simulations.
Related papers
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics.
Traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.
This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models.
arXiv Detail & Related papers (2024-11-08T15:22:20Z) - Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators [0.9208007322096533]
We present a novel approach to accelerate real time TDDFT based electron dynamics simulations.
By leveraging physics-informed constraints and high-resolution training data, our model achieves superior accuracy and computational speed.
This method has potential in enabling real-time, on-the-fly modeling of laser-irradiated molecules and materials.
arXiv Detail & Related papers (2024-07-12T18:29:48Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
In practical power systems, dynamic component modeling has long faced the challenges of model determination and model calibration.
In this paper, based on the general framework of neural ordinary differential equations (ODEs), a modified neural ODE module and a neural differential-algebraic equations (DAEs) module for power system dynamic component modeling are proposed.
The modules adopt an autoencoder to raise the dimension of state variables, model the dynamics of components with artificial neural networks (ANNs) and keep the numerical integration structure.
arXiv Detail & Related papers (2021-10-25T14:15:45Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.