Neural ODE and DAE Modules for Power System Dynamic Modeling
- URL: http://arxiv.org/abs/2110.12981v1
- Date: Mon, 25 Oct 2021 14:15:45 GMT
- Title: Neural ODE and DAE Modules for Power System Dynamic Modeling
- Authors: Tannan Xiao, Ying Chen, Tirui He, and Huizhe Guan
- Abstract summary: In practical power systems, dynamic component modeling has long faced the challenges of model determination and model calibration.
In this paper, based on the general framework of neural ordinary differential equations (ODEs), a modified neural ODE module and a neural differential-algebraic equations (DAEs) module for power system dynamic component modeling are proposed.
The modules adopt an autoencoder to raise the dimension of state variables, model the dynamics of components with artificial neural networks (ANNs) and keep the numerical integration structure.
- Score: 2.342020413587919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The time-domain simulation is the fundamental tool for power system transient
stability analysis. Accurate and reliable simulations rely on accurate dynamic
component modeling. In practical power systems, dynamic component modeling has
long faced the challenges of model determination and model calibration,
especially with the rapid development of renewable generation and power
electronics. In this paper, based on the general framework of neural ordinary
differential equations (ODEs), a modified neural ODE module and a neural
differential-algebraic equations (DAEs) module for power system dynamic
component modeling are proposed. The modules adopt an autoencoder to raise the
dimension of state variables, model the dynamics of components with artificial
neural networks (ANNs), and keep the numerical integration structure. In the
neural DAE module, an additional ANN is used to calculate injection currents.
The neural models can be easily integrated into time-domain simulations. With
datasets consisting of sampled curves of input variables and output variables,
the proposed modules can be used to fulfill the tasks of parameter inference,
physics-data-integrated modeling, black-box modeling, etc., and can be easily
integrated into power system dynamic simulations. Some simple numerical tests
are carried out in the IEEE-39 system and prove the validity and potentiality
of the proposed modules.
Related papers
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.
By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
We develop compositional learning algorithms for coupled dynamical systems.
We use neural networks to parametrize unknown terms in differential and algebraic components of a port-Hamiltonian DAE.
We train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
arXiv Detail & Related papers (2024-12-15T15:13:11Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
We propose a novel machine learning architecture, termed model-integrated neural networks (MINN)
MINN learns the physics-based dynamics of general autonomous or non-autonomous systems consisting of partial differential-algebraic equations (PDAEs)
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Neural Modal ODEs: Integrating Physics-based Modeling with Neural ODEs
for Modeling High Dimensional Monitored Structures [9.065343126886093]
This paper proposes a framework - termed Neural Modal ODEs - to integrate physics-based modeling with deep learning.
An autoencoder learns the abstract mappings from the first few items of observational data to the initial values of latent variables.
The decoder of the proposed model adopts the eigenmodes derived from an eigen-analysis applied to the linearized portion of a physics-based model.
arXiv Detail & Related papers (2022-07-16T09:30:20Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives.
This study proposes a machine-learned data robustness-driven modeling approach for path-dependent materials based on the measurable material.
arXiv Detail & Related papers (2022-05-01T23:25:08Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.