論文の概要: Topic, Sentiment and Impact Analysis: COVID19 Information Seeking on
Social Media
- arxiv url: http://arxiv.org/abs/2008.12435v1
- Date: Fri, 28 Aug 2020 02:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 02:41:06.010602
- Title: Topic, Sentiment and Impact Analysis: COVID19 Information Seeking on
Social Media
- Title(参考訳): 話題、感情、影響分析:ソーシャルメディア上でのcovid-19情報検索
- Authors: Md Abul Bashar, Richi Nayak, Thirunavukarasu Balasubramaniam
- Abstract要約: この研究は、COVID19に関連するオーストラリアの球面の大規模な時空間的ツイートデータセットを分析した。
この手法にはボリューム分析、ダイナミックトピックモデリング、感情検出、セマンティックブランドスコアが含まれていた。
得られた知見は、政府報告事例のような独立に観察された現象と比較される。
- 参考スコア(独自算出の注目度): 1.6328866317851185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When people notice something unusual, they discuss it on social media. They
leave traces of their emotions via text expressions. A systematic collection,
analysis, and interpretation of social media data across time and space can
give insights on local outbreaks, mental health, and social issues. Such timely
insights can help in developing strategies and resources with an appropriate
and efficient response. This study analysed a large Spatio-temporal tweet
dataset of the Australian sphere related to COVID19. The methodology included a
volume analysis, dynamic topic modelling, sentiment detection, and semantic
brand score to obtain an insight on the COVID19 pandemic outbreak and public
discussion in different states and cities of Australia over time. The obtained
insights are compared with independently observed phenomena such as government
reported instances.
- Abstract(参考訳): 人々が異常なことに気づくと、ソーシャルメディアでそれを議論する。
彼らは感情の痕跡をテキスト表現で残している。
時間と空間にわたるソーシャルメディアデータの体系的な収集、分析、解釈は、局所的なアウトブレイク、メンタルヘルス、社会問題に関する洞察を与える。
このようなタイムリーな洞察は、適切な効率的なレスポンスで戦略やリソースを開発するのに役立ちます。
この研究は、COVID19に関連するオーストラリアの球面の大規模な時空間ツイートデータセットを分析した。
この手法にはボリューム分析、ダイナミックトピックモデリング、感情検出、セマンティックブランドスコアが含まれており、covid-19パンデミックの流行や、オーストラリア各州や都市での公的な議論についての洞察を得ることができた。
得られた知見は、政府報告事例のような独立に観察された現象と比較される。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Large language models for sentiment analysis of newspaper articles during COVID-19: The Guardian [0.16777183511743468]
この研究は、新型コロナウイルスのさまざまな段階におけるガーディアン紙の感情分析を提供する。
パンデミックの初期段階では、公衆の感情が緊急の危機対応を優先し、後に健康と経済への影響に焦点を移した。
結果は、パンデミックの初期段階において、公衆の感情が緊急の危機対応を優先し、後に健康と経済への影響に焦点を移したことを示している。
論文 参考訳(メタデータ) (2024-05-20T07:10:52Z) - A Comparative Analysis of the COVID-19 Infodemic in English and Chinese:
Insights from Social Media Textual Data [2.641576480886427]
新型コロナウイルス(COVID-19)のインフォデミック(インフォデミック)は、パンデミックに関連する誤報や未確認の主張が急速に広まるのを特徴としている。
本稿では、ソーシャルメディアプラットフォームから抽出したテキストデータを用いて、英語と中国語におけるCOVID-19インフォデミックの比較分析を行った。
論文 参考訳(メタデータ) (2023-11-14T08:55:11Z) - GPT-4V(ision) as A Social Media Analysis Engine [77.23394183063238]
本稿では,GPT-4Vのソーシャルマルチメディア分析能力について考察する。
我々は、感情分析、ヘイトスピーチ検出、フェイクニュース識別、人口推定、政治的イデオロギー検出を含む5つの代表的なタスクを選択する。
GPT-4Vはこれらのタスクにおいて顕著な効果を示し、画像とテキストのペアの理解、文脈と文化の認識、広義のコモンセンス知識などの強みを示している。
論文 参考訳(メタデータ) (2023-11-13T18:36:50Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
新型コロナウイルスのパンデミックは、ソーシャルメディアプラットフォーム上で議論されている出来事の1つだ。
パンデミックの状況では、ソーシャルメディアのテキストを分析して感情的傾向を明らかにすることが非常に有用である。
我々は、最先端のBERTモデルとDeep CNNモデルを用いて、ソーシャルメディアを通じて、新型コロナウイルスのパンデミックに対する社会の認識を研究する。
論文 参考訳(メタデータ) (2022-11-04T14:35:56Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Automatic Monitoring Social Dynamics During Big Incidences: A Case Study
of COVID-19 in Bangladesh [0.26651200086513094]
本研究は、co-19パンデミックに関連するバングラデシュの新聞データを分析した。
この分析は、政府や他の組織がこのパンデミックによって社会で発生した課題を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-01-24T07:46:17Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
国像は国際関係と経済発展に大きな影響を与えている。
新型コロナウイルス(COVID-19)の世界的な流行で、各国と国民は異なる反応を見せている。
本研究では,中国を具体的かつ典型的な事例として捉え,大規模Twitterデータセットのアスペクトベース感情分析を用いてそのイメージを考察する。
論文 参考訳(メタデータ) (2020-09-12T15:54:51Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
本稿では、関連する出版物をレビューし、視覚知覚分析の分野の概要を概観する。
また,3つの視点から一般的な視覚知覚分析システムの設計原理について述べる。
様々なレベルの粒度と、異なる方法でイメージに対する感情に影響を与えるコンポーネントを考慮し、問題の定式化について論じる。
論文 参考訳(メタデータ) (2020-04-24T10:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。