論文の概要: Active learning of deep surrogates for PDEs: Application to metasurface
design
- arxiv url: http://arxiv.org/abs/2008.12649v1
- Date: Mon, 24 Aug 2020 17:14:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 12:43:08.713007
- Title: Active learning of deep surrogates for PDEs: Application to metasurface
design
- Title(参考訳): PDE用ディープサロゲートの能動的学習 : 準曲面設計への応用
- Authors: Rapha\"el Pestourie, Youssef Mroueh, Thanh V. Nguyen, Payel Das,
Steven G. Johnson
- Abstract要約: 本稿では,光表面成分のニューラルネットワーク・サロゲートモデルにおいて,トレーニングポイント数を桁違いに削減する能動的学習アルゴリズムを提案する。
その結果,サロゲート評価は直接解よりも2桁以上高速であり,大規模工学最適化の高速化にどのように活用できるかを実証した。
- 参考スコア(独自算出の注目度): 30.731619528075214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surrogate models for partial-differential equations are widely used in the
design of meta-materials to rapidly evaluate the behavior of composable
components. However, the training cost of accurate surrogates by machine
learning can rapidly increase with the number of variables. For photonic-device
models, we find that this training becomes especially challenging as design
regions grow larger than the optical wavelength. We present an active learning
algorithm that reduces the number of training points by more than an order of
magnitude for a neural-network surrogate model of optical-surface components
compared to random samples. Results show that the surrogate evaluation is over
two orders of magnitude faster than a direct solve, and we demonstrate how this
can be exploited to accelerate large-scale engineering optimization.
- Abstract(参考訳): 部分微分方程式の代理モデルは、構成可能な成分の挙動を迅速に評価するためにメタマテリアルの設計に広く用いられている。
しかしながら、機械学習による正確なサロゲートのトレーニングコストは、変数の数によって急速に増加する可能性がある。
フォトニックデバイスモデルでは、光波長よりもデザイン領域が大きくなるにつれて、このトレーニングは特に困難になる。
本稿では,光表面成分のニューラル・ネットワーク・サロゲートモデルにおいて,ランダムサンプルと比較してトレーニング点数を1桁以上削減する能動的学習アルゴリズムを提案する。
その結果,サロゲート評価は直接解よりも2桁以上高速であり,大規模工学最適化の高速化にどのように活用できるかを実証した。
関連論文リスト
- Jacobian-Enhanced Neural Networks [0.0]
ヤコビアン強化ニューラルネットワーク(JENN)は密結合多層パーセプトロンである。
JENNの主な利点は、標準のニューラルネットワークに比べてトレーニングポイントが少なくて精度が良いことである。
論文 参考訳(メタデータ) (2024-06-13T14:04:34Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Transfer learning-assisted inverse modeling in nanophotonics based on mixture density networks [0.840835093659811]
本稿では,移動学習により強化された混合密度ネットワークモデルに基づくナノフォトニック構造の逆モデリング手法を提案する。
提案手法は,光応答を入力とする設計ソリューションの予測能力を高い精度で保ちながら,伝達学習に基づく手法を用いてこれらの制限を克服することができる。
論文 参考訳(メタデータ) (2024-01-21T09:03:30Z) - Model-aware reinforcement learning for high-performance Bayesian
experimental design in quantum metrology [0.5461938536945721]
量子センサは、様々なパラメータにわたる実験者による操作を可能にすることで、推定中に制御の柔軟性を提供する。
量子力学、推定、仮説テストにおいて、幅広い問題を最適化できる汎用的な手順を導入する。
粒子フィルタリングに基づくモデル認識強化学習(RL)とベイズ推定を組み合わせた。
論文 参考訳(メタデータ) (2023-12-28T12:04:15Z) - Multi-scale Time-stepping of Partial Differential Equations with
Transformers [8.430481660019451]
偏微分方程式(PDE)のための高速サロゲートの開発
我々のモデルは、ナヴィエ・ストークス方程式の時間進化を予測する際に、同様のあるいはより良い結果が得られる。
論文 参考訳(メタデータ) (2023-11-03T20:26:43Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
トモグラフィー問題に対する遺伝的および機械学習アプローチの適用について検討する。
ニューラルネットワークベースのスキームは、リアルタイムにキャラクタリゼーションを必要とするアプリケーションにおいて、重要なスピードアップを提供する。
これらの結果は、より一般的な量子プロセスにおけるトモグラフィーアプローチの最適化の基礎となることを期待する。
論文 参考訳(メタデータ) (2022-10-27T11:37:14Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。