論文の概要: Neural Operators for Accelerating Scientific Simulations and Design
- arxiv url: http://arxiv.org/abs/2309.15325v5
- Date: Thu, 4 Jan 2024 20:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 18:06:36.576306
- Title: Neural Operators for Accelerating Scientific Simulations and Design
- Title(参考訳): 科学シミュレーションと設計を加速するニューラル演算子
- Authors: Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel
Liu-Schiaffini, Jean Kossaifi, Anima Anandkumar
- Abstract要約: Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
- 参考スコア(独自算出の注目度): 85.89660065887956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific discovery and engineering design are currently limited by the time
and cost of physical experiments, selected mostly through trial-and-error and
intuition that require deep domain expertise. Numerical simulations present an
alternative to physical experiments but are usually infeasible for complex
real-world domains due to the computational requirements of existing numerical
methods. Artificial intelligence (AI) presents a potential paradigm shift by
developing fast data-driven surrogate models. In particular, an AI framework,
known as Neural Operators, presents a principled framework for learning
mappings between functions defined on continuous domains, e.g., spatiotemporal
processes and partial differential equations (PDE). They can extrapolate and
predict solutions at new locations unseen during training, i.e., perform
zero-shot super-resolution. Neural Operators can augment or even replace
existing simulators in many applications, such as computational fluid dynamics,
weather forecasting, and material modeling, while being 4-5 orders of magnitude
faster. Further, Neural Operators can be integrated with physics and other
domain constraints enforced at finer resolutions to obtain high-fidelity
solutions and good generalization. Since Neural Operators are differentiable,
they can directly optimize parameters for inverse design and other inverse
problems. We believe that Neural Operators present a transformative approach to
simulation and design, enabling rapid research and development.
- Abstract(参考訳): 科学的発見と工学的設計は、物理実験の時間とコストによって制限されており、主にドメインの深い専門知識を必要とする試行錯誤と直観によって選択されている。
数値シミュレーションは物理実験に代わるものであるが、既存の数値手法の計算要件のため、通常複雑な実世界領域では実現不可能である。
人工知能(AI)は、高速なデータ駆動サロゲートモデルを開発することによって、潜在的なパラダイムシフトを示す。
特に、Neural Operatorsとして知られるAIフレームワークは、例えば時空間過程や偏微分方程式(PDE)など、連続ドメイン上で定義された関数間のマッピングを学習するための原則化されたフレームワークを提供する。
トレーニング中に見つからない新しい場所で、すなわちゼロショット超解像を行うソリューションを外挿し、予測することができる。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができ、4~5桁高速である。
さらに、神経演算子は、より細かい解像度で強制される物理学やその他の領域の制約と統合でき、高忠実性ソリューションと良好な一般化を得ることができる。
ニューラル演算子は微分可能であるため、逆設計や他の逆問題に対するパラメータを直接最適化することができる。
我々はニューラルオペレーターがシミュレーションと設計の変革的なアプローチを示し、迅速な研究と開発を可能にしていると考えている。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
本稿では,科学計算の基礎モデルとしてNeural Combinatorial Wavelet Neural Operator (NCWNO) の概念を紹介する。
NCWNOは、物理学の様々なスペクトルから学習し、パラメトリック偏微分方程式(PDE)に関連する解作用素に継続的に適応するように特別に設計されている。
提案した基礎モデルには、2つの大きな利点がある: (i) 複数のパラメトリックPDEに対する解演算子を同時に学習し、 (ii) 極小調整の少ない新しいパラメトリックPDEに素早く一般化できる。
論文 参考訳(メタデータ) (2023-10-29T03:20:10Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
我々は、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを開発した。
訓練されたニューラル演算子は、任意の速度構造やソース位置について、無視可能な時間で解を計算することができる。
本手法を2次元音響波動方程式を用いて説明し, 地震トモグラフィへの適用性を実証する。
論文 参考訳(メタデータ) (2021-08-11T19:17:39Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
論文 参考訳(メタデータ) (2021-06-09T20:46:17Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。