論文の概要: TATL at W-NUT 2020 Task 2: A Transformer-based Baseline System for
Identification of Informative COVID-19 English Tweets
- arxiv url: http://arxiv.org/abs/2008.12854v1
- Date: Fri, 28 Aug 2020 21:27:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 01:31:29.128652
- Title: TATL at W-NUT 2020 Task 2: A Transformer-based Baseline System for
Identification of Informative COVID-19 English Tweets
- Title(参考訳): TATL at W-NUT 2020 Task 2: A Baseline System for Identification of Informative COVID-19 English Tweets (英語)
- Authors: Anh Tuan Nguyen
- Abstract要約: W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
事前訓練されたトランスフォーマー言語モデルの最近の進歩に触発されて,タスクの単純かつ効果的なベースラインを提案する。
その単純さにもかかわらず、私たちの提案したアプローチは、リーダーボードに非常に競争力のある結果を示します。
- 参考スコア(独自算出の注目度): 1.4315501760755605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the COVID-19 outbreak continues to spread throughout the world, more and
more information about the pandemic has been shared publicly on social media.
For example, there are a huge number of COVID-19 English Tweets daily on
Twitter. However, the majority of those Tweets are uninformative, and hence it
is important to be able to automatically select only the informative ones for
downstream applications. In this short paper, we present our participation in
the W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English
Tweets. Inspired by the recent advances in pretrained Transformer language
models, we propose a simple yet effective baseline for the task. Despite its
simplicity, our proposed approach shows very competitive results in the
leaderboard as we ranked 8 over 56 teams participated in total.
- Abstract(参考訳): 新型コロナウイルス(covid-19)の流行が世界中に広がるにつれ、パンデミックに関する情報がソーシャルメディアで公開されてきている。
たとえば、twitterには毎日大量のcovid-19英語ツイートがある。
しかし、これらのツイートの大部分は非形式的であるため、ダウンストリームアプリケーション用の情報のみを自動的に選択できることが重要である。
本稿では,w-nut 2020 share task 2: identification of informative covid-19 english tweets への参加について述べる。
事前訓練されたトランスフォーマー言語モデルの最近の進歩に触発されて,タスクの単純かつ効果的なベースラインを提案する。
そのシンプルさにもかかわらず、提案手法はリーダーボードにおいて非常に競争的な結果を示しており、56チーム中8チームが参加した。
関連論文リスト
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
論文 参考訳(メタデータ) (2024-04-30T17:06:20Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
我々は、ウルドゥー語に対する虐待と脅しの2つの共通タスクを提示する。
本研究では, (i) 乱用と非乱用というラベル付きツイートを含む手動注釈付きデータセットと, (ii) 脅威と非脅威の2つを提示する。
両方のサブタスクに対して、m-Bertベースのトランスモデルは最高の性能を示した。
論文 参考訳(メタデータ) (2022-07-14T07:38:13Z) - UniCon+: ICTCAS-UCAS Submission to the AVA-ActiveSpeaker Task at
ActivityNet Challenge 2022 [69.67841335302576]
本稿では,アクティベーションネットチャレンジ2022におけるAVAアクティブ話者検出(ASD)課題に対する,我々の勝利ソリューションの簡潔な説明を行う。
基盤となるモデルであるUniCon+は、以前の作業であるUnified Context Network(UniCon)とExtended UniConの上に構築され続けています。
アーキテクチャをシンプルなGRUベースのモジュールで拡張し、繰り返し発生するアイデンティティの情報がシーンを流れるようにします。
論文 参考訳(メタデータ) (2022-06-22T06:11:07Z) - BERTuit: Understanding Spanish language in Twitter through a native
transformer [70.77033762320572]
bfBERTuitは、これまでスペイン語のために提案された大きなトランスフォーマーで、2億3000万のスペイン語ツイートの膨大なデータセットで事前トレーニングされている。
私たちのモチベーションは、スペイン語のTwitterをよりよく理解し、このソーシャルネットワークにフォーカスしたアプリケーションに利用するための強力なリソースを提供することです。
論文 参考訳(メタデータ) (2022-04-07T14:28:51Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
本稿では,WNUT-2020 Task2 において,NIT_COVID-19 チームによって提出された WNUT-2020 Task2 における COVID-19 英語のつぶやきを識別するためのモデルを提案する。
共用タスクWNUT 2020 Task2のモデルによる性能はF1スコアの89.14%である。
論文 参考訳(メタデータ) (2020-11-11T05:20:39Z) - NEU at WNUT-2020 Task 2: Data Augmentation To Tell BERT That Death Is
Not Necessarily Informative [0.0]
W-NUT2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
BERTは、情報的ツイートを識別するための簡単な信号を利用し、非情報的ツイートに単純なパターンを追加することで、BERTのパフォーマンスを劇的に低下させることを示す。
論文 参考訳(メタデータ) (2020-09-18T02:16:49Z) - Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets [0.0]
本稿では、英語のつぶやきを前提として、そのツイートがCOVID-19に関する情報的内容を持つかどうかを自動的に識別するモデルを提案する。
インフォメーションクラスにおけるF1スコアの約1%は、トップパフォーマンスチームによる結果にしか影響しない競争的な結果を達成しました。
論文 参考訳(メタデータ) (2020-09-14T15:49:16Z) - UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19
Information on the Twitter Social Network [2.7528170226206443]
本稿では,W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
我々は,様々な微調整技術を用いた COVID-Twitter-BERT (CT-BERT) に基づくトランスフォーマーモデルを用いた簡易かつ効果的なアプローチを提案する。
その結果、F1スコアの90.94%を達成し、このタスクのリーダーボードで3位となり、合計56チームが参加した。
論文 参考訳(メタデータ) (2020-09-07T08:20:31Z) - EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with
Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets [0.0]
WNUT Task 2: informationative COVID-19 English Tweets の同定を行う。
私たちの最も成功したモデルは、RoBERTa、XLNet、BERTweetといったトランスフォーマーのアンサンブルで、Semi-Supervised Learning (SSL)環境でトレーニングされています。
提案システムでは,テストセット上でのF1スコアが0.9011(リーダボードでは7位)に達し,FastText埋め込みを用いたシステムに比べて性能が大幅に向上した。
論文 参考訳(メタデータ) (2020-09-06T15:57:28Z) - TICO-19: the Translation Initiative for Covid-19 [112.5601530395345]
COvid-19の翻訳イニシアチブ(TICO-19)は、テストおよび開発データを、35の異なる言語でAIおよびMT研究者に提供した。
同じデータが表現されているすべての言語に変換されるため、テストや開発は、セット内の任意の言語のペアリングに対して行うことができる。
論文 参考訳(メタデータ) (2020-07-03T16:26:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。