論文の概要: Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets
- arxiv url: http://arxiv.org/abs/2009.06372v1
- Date: Mon, 14 Sep 2020 15:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 11:49:07.618690
- Title: Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets
- Title(参考訳): W-NUT 2020 Task 2: Informative COVID-19 English Tweetsを識別するBERTベースのシステム
- Authors: Thai Quoc Hoang and Phuong Thu Vu
- Abstract要約: 本稿では、英語のつぶやきを前提として、そのツイートがCOVID-19に関する情報的内容を持つかどうかを自動的に識別するモデルを提案する。
インフォメーションクラスにおけるF1スコアの約1%は、トップパフォーマンスチームによる結果にしか影響しない競争的な結果を達成しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As of 2020 when the COVID-19 pandemic is full-blown on a global scale,
people's need to have access to legitimate information regarding COVID-19 is
more urgent than ever, especially via online media where the abundance of
irrelevant information overshadows the more informative ones. In response to
such, we proposed a model that, given an English tweet, automatically
identifies whether that tweet bears informative content regarding COVID-19 or
not. By ensembling different BERTweet model configurations, we have achieved
competitive results that are only shy of those by top performing teams by
roughly 1% in terms of F1 score on the informative class. In the
post-competition period, we have also experimented with various other
approaches that potentially boost generalization to a new dataset.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックが世界規模で完全に流行している2020年現在、人々が新型コロナウイルスに関する正当な情報にアクセスできることは、特に関係のない情報が多ければ多いほど、より情報に富むメディアを通じて、これまで以上に緊急である。
そこで我々は、英語のつぶやきを考慮に入れ、そのつぶやきがCOVID-19に関する情報的内容を持っているかどうかを自動的に識別するモデルを提案した。
さまざまなBERTweetモデル構成をアンサンブルすることで、情報のあるクラスにおけるF1スコアの約1%でトップパフォーマンスチームによる結果に匹敵する結果を得たのです。
競争後の期間には、新しいデータセットへの一般化を促進する様々なアプローチの実験も行っています。
関連論文リスト
- BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
本稿では,WMT'22チャット翻訳タスクに対して,北京地東大学とWeChat AIを共同で提案する。
Transformerに基づいて、いくつかの有効な変種を適用します。
本システムでは,0.810と0.946のCOMETスコアを達成している。
論文 参考訳(メタデータ) (2022-11-28T02:35:04Z) - Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2021 [55.41644538483948]
共有タスクの目標は、コミュニティにこの重要な問題を解決するための効率的な方法を考え出すことを動機付けることです。
トレーニングセットには1300件の注釈付きニュース記事、750件のリアルニュース、550件のフェイクニュース、300件のニュース記事、200件のリアルニュース、100件のフェイクニュースが含まれている。
F1-macroスコアは0.679で、これは過去最高の0.907 F1-macroよりも低かった。
論文 参考訳(メタデータ) (2022-07-11T18:58:36Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - Changes in European Solidarity Before and During COVID-19: Evidence from
a Large Crowd- and Expert-Annotated Twitter Dataset [77.27709662210363]
我々は,NLPにおける教師付き機械学習の新たな課題として,社会的連帯という社会科学的概念とその競争,反連帯の概念を導入する。
我々は,複数のアノテータと2つのアノテーションアプローチ(専門家対群衆)を利用して,(反)整合性表現のための2.3kの英語とドイツ語のつぶやきを注釈する。
今回の結果は、新型コロナウイルス危機で連帯がますます健全になり、競争が激化したことを示している。
論文 参考訳(メタデータ) (2021-08-02T17:03:12Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
本稿では,WNUT-2020 Task2 において,NIT_COVID-19 チームによって提出された WNUT-2020 Task2 における COVID-19 英語のつぶやきを識別するためのモデルを提案する。
共用タスクWNUT 2020 Task2のモデルによる性能はF1スコアの89.14%である。
論文 参考訳(メタデータ) (2020-11-11T05:20:39Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19
Information on the Twitter Social Network [2.7528170226206443]
本稿では,W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
我々は,様々な微調整技術を用いた COVID-Twitter-BERT (CT-BERT) に基づくトランスフォーマーモデルを用いた簡易かつ効果的なアプローチを提案する。
その結果、F1スコアの90.94%を達成し、このタスクのリーダーボードで3位となり、合計56チームが参加した。
論文 参考訳(メタデータ) (2020-09-07T08:20:31Z) - BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter
by Combining Deep Learning and Transfer Learning Models [0.0]
本稿では, WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweetsについて述べる。
このタスクのデータセットには、人間によってラベル付けされた英語の1万のツイートが含まれている。
実験結果から, システム上でのインフォーマルラベルのF1は, テストセットで88.81%の精度で達成できたことが示唆された。
論文 参考訳(メタデータ) (2020-09-06T08:24:55Z) - TATL at W-NUT 2020 Task 2: A Transformer-based Baseline System for
Identification of Informative COVID-19 English Tweets [1.4315501760755605]
W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets。
事前訓練されたトランスフォーマー言語モデルの最近の進歩に触発されて,タスクの単純かつ効果的なベースラインを提案する。
その単純さにもかかわらず、私たちの提案したアプローチは、リーダーボードに非常に競争力のある結果を示します。
論文 参考訳(メタデータ) (2020-08-28T21:27:42Z) - A System for Worldwide COVID-19 Information Aggregation [92.60866520230803]
我々は、トピックによって分類された7言語10の地域から信頼できる記事を含む世界的な新型コロナウイルス情報収集システムを構築した。
ニューラルマシン翻訳モジュールは、他言語の論文を日本語と英語に翻訳する。
記事とトピックのペアデータセットに基づいてトレーニングされたBERTベースのトピック分類器は、ユーザが興味のある情報を効率的に見つけるのに役立つ。
論文 参考訳(メタデータ) (2020-07-28T01:33:54Z) - Misinformation Has High Perplexity [55.47422012881148]
疑似クレームを教師なしの方法でデバンクするために, 難易度を活用することを提案する。
まず,これらの主張に類似した文に基づいて,科学的およびニュースソースから信頼性のある証拠を抽出する。
第2に,抽出したエビデンスを言語モデルにプライマリし,難易度スコアに基づいて与えられたクレームの正当性を評価する。
論文 参考訳(メタデータ) (2020-06-08T15:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。