Video Event Reasoning and Prediction by Fusing World Knowledge from LLMs with Vision Foundation Models
- URL: http://arxiv.org/abs/2507.05822v1
- Date: Tue, 08 Jul 2025 09:43:17 GMT
- Title: Video Event Reasoning and Prediction by Fusing World Knowledge from LLMs with Vision Foundation Models
- Authors: L'ea Dubois, Klaus Schmidt, Chengyu Wang, Ji-Hoon Park, Lin Wang, Santiago Munoz,
- Abstract summary: Current understanding models excel at recognizing "what" but fall short in high-level cognitive tasks like causal reasoning and future prediction.<n>We propose a novel framework that fuses a powerful Vision Foundation Model for deep visual perception with a Large Language Model (LLM) serving as a knowledge-driven reasoning core.
- Score: 10.1080193179562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current video understanding models excel at recognizing "what" is happening but fall short in high-level cognitive tasks like causal reasoning and future prediction, a limitation rooted in their lack of commonsense world knowledge. To bridge this cognitive gap, we propose a novel framework that synergistically fuses a powerful Vision Foundation Model (VFM) for deep visual perception with a Large Language Model (LLM) serving as a knowledge-driven reasoning core. Our key technical innovation is a sophisticated fusion module, inspired by the Q-Former architecture, which distills complex spatiotemporal and object-centric visual features into a concise, language-aligned representation. This enables the LLM to effectively ground its inferential processes in direct visual evidence. The model is trained via a two-stage strategy, beginning with large-scale alignment pre-training on video-text data, followed by targeted instruction fine-tuning on a curated dataset designed to elicit advanced reasoning and prediction skills. Extensive experiments demonstrate that our model achieves state-of-the-art performance on multiple challenging benchmarks. Notably, it exhibits remarkable zero-shot generalization to unseen reasoning tasks, and our in-depth ablation studies validate the critical contribution of each architectural component. This work pushes the boundary of machine perception from simple recognition towards genuine cognitive understanding, paving the way for more intelligent and capable AI systems in robotics, human-computer interaction, and beyond.
Related papers
- DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding [61.26026947423187]
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features.<n>Current Multimodal Large Language Models (MLLMs) struggle to integrate reasoning into visual perception.<n>We propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities.
arXiv Detail & Related papers (2025-03-17T04:06:34Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework to dissect the perception-reasoning interface in Vision-Language Models (VLMs)<n>We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.<n>Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - Dynamic Knowledge Integration for Enhanced Vision-Language Reasoning [0.0]
We propose an Adaptive Knowledge-Guided Pretraining for Large Vision-Language Models (AKGP-LVLM)<n>It incorporates structured and unstructured knowledge into LVLMs during pretraining and fine-tuning.<n>We evaluate our method on four benchmark datasets, demonstrating significant performance improvements over state-of-the-art models.
arXiv Detail & Related papers (2025-01-15T05:45:04Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Understanding Data Augmentation from a Robustness Perspective [10.063624819905508]
Data augmentation stands out as a pivotal technique to amplify model robustness.
This manuscript takes both a theoretical and empirical approach to understanding the phenomenon.
Our empirical evaluations dissect the intricate mechanisms of emblematic data augmentation strategies.
These insights provide a novel lens through which we can re-evaluate model safety and robustness in visual recognition tasks.
arXiv Detail & Related papers (2023-09-07T10:54:56Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.