On the quantum tunneling of one dimensional coulomb singular potential
barrier
- URL: http://arxiv.org/abs/2008.12957v1
- Date: Sat, 29 Aug 2020 10:33:15 GMT
- Title: On the quantum tunneling of one dimensional coulomb singular potential
barrier
- Authors: Atom Muradyan and Gevorg Muradyan
- Abstract summary: We get that the Coulomb sibgularity is reflected as infinitly accelerated oscillations in the transmission coefficient between zero and one when the incident particles energy approaches the zero boundary.
At relatively high energies, the tunneling acqures the caracter inherent in regular potentials, and becomes completly transparent in the asymptote.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How quantum tunneling will behave when the singularity is preserved as much
as possible is the main question of this paper. We get that the Coulomb
sibgularity is reflected as infinitly accelerated oscillations in the
transmission coefficient between zero and one when the incident particles
energy approaches the zero boundary. At relatively high energies, the tunneling
acqures the caracter inherent in regular potentials, and becomes completly
transparent in the asymptote.
Related papers
- Long-Range Quantum Tunneling via Matter Wave [0.0]
We study the tunneling of an ultracold atom among $N$ far-separated trapping potentials in a state-selective optical lattice.
It is found that, by the mediation role of the propagating matter wave emitted from the excited-state atom, a coherent tunneling of the tightly confined atom to the remote trapping potentials can occur.
arXiv Detail & Related papers (2024-06-10T10:53:18Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum backflow current in a ring: Optimal bounds and fractality [0.0]
We study a quantum particle confined to a ring and prepared in a state composed of a fixed number of lowest energy eigenstates with non-negative angular momentum.
We investigate the time-dependent behavior of the probability current at a specified point along the ring's circumference.
We present an analytical expression for a quantum state that yields a record-high backflow probability transfer.
arXiv Detail & Related papers (2024-03-27T14:10:01Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum tunneling of a singular potential [0.0]
singularity of the potential function makes quantum tunneling problem mathematically underdetermined.
I discuss here how quantum tunneling will behave if the original singular nature of the Schrodinger equation left untuched.
arXiv Detail & Related papers (2021-02-25T11:21:13Z) - Photon-instanton collider implemented by a superconducting circuit [0.0]
We show how galvanic coupling of a transmon qubit to a high-impedance transmission line allows the observation of inelastic collisions of single microwave photons with instantons.
We develop a formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts.
arXiv Detail & Related papers (2020-10-06T11:23:12Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.