Photon-instanton collider implemented by a superconducting circuit
- URL: http://arxiv.org/abs/2010.02630v3
- Date: Tue, 30 Mar 2021 09:03:09 GMT
- Title: Photon-instanton collider implemented by a superconducting circuit
- Authors: Amir Burshtein, Roman Kuzmin, Vladimir E. Manucharyan, Moshe Goldstein
- Abstract summary: We show how galvanic coupling of a transmon qubit to a high-impedance transmission line allows the observation of inelastic collisions of single microwave photons with instantons.
We develop a formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instantons, spacetime-localized quantum field tunneling events, are
ubiquitous in correlated condensed matter and high energy systems. However,
their direct observation through collisions with conventional particles has not
been considered possible. We show how recent advances in circuit quantum
electrodynamics, specifically, the realization of galvanic coupling of a
transmon qubit to a high-impedance transmission line, allows the observation of
inelastic collisions of single microwave photons with instantons (phase slips).
We develop a formalism for calculating the photon-instanton cross section,
which should be useful in other quantum field theoretical contexts. In
particular, we show that the inelastic scattering probability can significantly
exceed the effect of conventional Josephson quartic anharmonicity, and reach
order-unity values.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Continuous microwave photon counting by semiconductor-superconductor
hybrids [0.19791587637442667]
We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots.
The device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.
arXiv Detail & Related papers (2024-01-12T15:07:26Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Observation of a superradiant phase transition with emergent cat states [18.801683138820948]
Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level.
We report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field.
arXiv Detail & Related papers (2022-07-12T13:12:23Z) - Quasiparticle Poisoning of Superconducting Qubits from Resonant
Absorption of Pair-breaking Photons [0.0]
We show that a dominant mechanism for quasiparticle poisoning in superconducting qubits is direct absorption of high-energy photons at the qubit junction.
A deep understanding of this physics will pave the way to realization of next-generation superconducting qubits.
arXiv Detail & Related papers (2022-03-13T05:54:28Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spatiotemporal dynamics of particle collisions in quantum spin chains [0.0]
Recent developments have highlighted the potential of quantum spin models to realize the phenomenology of confinement leading to bound states such as mesons.
We show that Ising chains also provide a quantum simulator platform to realize and probe particle collisions in pristine form.
arXiv Detail & Related papers (2020-11-23T18:53:29Z) - Inelastic scattering of a photon by a quantum phase-slip [0.0]
We show that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single microwave photon into a large number of lower-energy photons.
The measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid.
arXiv Detail & Related papers (2020-10-05T15:35:21Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.