Vehicle Route Prediction through Multiple Sensors Data Fusion
- URL: http://arxiv.org/abs/2008.13117v1
- Date: Sun, 30 Aug 2020 08:14:11 GMT
- Title: Vehicle Route Prediction through Multiple Sensors Data Fusion
- Authors: Ali Nawaz, Attique Ur Rehman
- Abstract summary: The framework consists of two modules and both are working in sequence.
The first module of our framework using a deep learning for recognizing the vehicle license plate number.
The second module using supervised learning algorithm of machine learning for predicting the route of the vehicle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle route prediction is one of the significant tasks in vehicles
mobility. It is one of the means to reduce the accidents and increase comfort
in human life. The task of route prediction becomes simpler with the
development of certain machine learning and deep learning libraries. Meanwhile,
the security and privacy issues are always lying in the vehicle communication
as well as in route prediction. Therefore, we proposed a framework which will
reduce these issues in vehicle communication and predict the route of vehicles
in crossroads. Specifically, our proposed framework consists of two modules and
both are working in sequence. The first module of our framework using a deep
learning for recognizing the vehicle license plate number. Then, the second
module using supervised learning algorithm of machine learning for predicting
the route of the vehicle by using velocity difference and previous mobility
patterns as the features of machine learning algorithm. Experiment results
shows that accuracy of our framework.
Related papers
- End-to-End Driving via Self-Supervised Imitation Learning Using Camera and LiDAR Data [6.849144123909844]
This letter proposes the first fully self-supervised learning framework, self-supervised imitation learning (SSIL), for E2E driving.
The proposed SSIL framework can learn E2E driving networks without using driving command data.
Our numerical experiments with three different benchmark datasets demonstrate that the proposed SSIL framework achieves very comparable E2E driving accuracy with the supervised learning counterpart.
arXiv Detail & Related papers (2023-08-28T06:17:15Z) - Inverting the Fundamental Diagram and Forecasting Boundary Conditions:
How Machine Learning Can Improve Macroscopic Models for Traffic Flow [0.0]
We consider a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle.
We extrapolate two important pieces of information: 1) if congestion is appearing under the sensor, and 2) the total amount of vehicles which is going to pass under the sensor in the next future.
These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors.
arXiv Detail & Related papers (2023-03-21T11:07:19Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Predicting highway lane-changing maneuvers: A benchmark analysis of
machine and ensemble learning algorithms [0.0]
We compare different machine and ensemble learning classification techniques to the rule-based model.
We predict two types of discretionary lane-change maneuvers: Overtaking (from slow to fast lane) and fold-down.
If the rule-based model provides limited predicting accuracy, especially in case of fold-down, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements.
arXiv Detail & Related papers (2022-04-20T22:55:59Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Vehicle trajectory prediction in top-view image sequences based on deep
learning method [1.181206257787103]
Estimating and predicting surrounding vehicles' movement is essential for an automated vehicle and advanced safety systems.
A model with low computational complexity is proposed, which is trained by images taken from the road's aerial image.
The proposed model can predict the vehicle's future path in any freeway only by viewing the images related to the history of the target vehicle's movement and its neighbors.
arXiv Detail & Related papers (2021-02-02T20:48:19Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.