Real-World Deployment of a Lane Change Prediction Architecture Based on Knowledge Graph Embeddings and Bayesian Inference
- URL: http://arxiv.org/abs/2506.11925v1
- Date: Fri, 13 Jun 2025 16:24:28 GMT
- Title: Real-World Deployment of a Lane Change Prediction Architecture Based on Knowledge Graph Embeddings and Bayesian Inference
- Authors: M. Manzour, Catherine M. Elias, Omar M. Shehata, R. Izquierdo, M. A. Sotelo,
- Abstract summary: This work demonstrates, on real hardware, a lane-change prediction system based on Knowledge Graph Embeddings (KGEs) and Bayesian inference.<n>The ego-vehicle employs a longitudinal braking action to ensure the safety of both itself and the surrounding vehicles.<n>Real-world hardware experimental validation demonstrates that our prediction system anticipates the target vehicle's lane change three to four seconds in advance.
- Score: 1.3281936946796913
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Research on lane change prediction has gained a lot of momentum in the last couple of years. However, most research is confined to simulation or results obtained from datasets, leaving a gap between algorithmic advances and on-road deployment. This work closes that gap by demonstrating, on real hardware, a lane-change prediction system based on Knowledge Graph Embeddings (KGEs) and Bayesian inference. Moreover, the ego-vehicle employs a longitudinal braking action to ensure the safety of both itself and the surrounding vehicles. Our architecture consists of two modules: (i) a perception module that senses the environment, derives input numerical features, and converts them into linguistic categories; and communicates them to the prediction module; (ii) a pretrained prediction module that executes a KGE and Bayesian inference model to anticipate the target vehicle's maneuver and transforms the prediction into longitudinal braking action. Real-world hardware experimental validation demonstrates that our prediction system anticipates the target vehicle's lane change three to four seconds in advance, providing the ego vehicle sufficient time to react and allowing the target vehicle to make the lane change safely.
Related papers
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Predicting highway lane-changing maneuvers: A benchmark analysis of
machine and ensemble learning algorithms [0.0]
We compare different machine and ensemble learning classification techniques to the rule-based model.
We predict two types of discretionary lane-change maneuvers: Overtaking (from slow to fast lane) and fold-down.
If the rule-based model provides limited predicting accuracy, especially in case of fold-down, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements.
arXiv Detail & Related papers (2022-04-20T22:55:59Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Video action recognition for lane-change classification and prediction
of surrounding vehicles [12.127050913280925]
Lane-change recognition and prediction tasks are posed as video action recognition problems.
We study the influence of context and observation horizons on performance, and different prediction horizons are analyzed.
The obtained results clearly demonstrate the potential of these methodologies to serve as robust predictors of future lane-changes of surrounding vehicles.
arXiv Detail & Related papers (2021-01-13T13:25:00Z) - Two-Stream Networks for Lane-Change Prediction of Surrounding Vehicles [8.828423067460644]
In highway scenarios, an alert human driver will typically anticipate early cut-in and cut-out maneuvers surrounding vehicles using only visual cues.
To deal with lane-change recognition and prediction of surrounding vehicles, we pose the problem as an action recognition/prediction problem by stacking visual cues from video cameras.
Two video action recognition approaches are analyzed: two-stream convolutional networks and multiplier networks.
arXiv Detail & Related papers (2020-08-25T07:59:15Z) - Perception as prediction using general value functions in autonomous
driving applications [5.071770433010771]
Perception as prediction learns data-driven predictions relating to the impact of actions on the agent's perception of the world.
We demonstrate perception as prediction by learning to predict an agent's front safety and rear safety with GVFs.
We show that these predictions can be used to produce similar control behavior to an LQR-based controller in an adaptive cruise control problem.
arXiv Detail & Related papers (2020-01-24T17:33:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.