Fair Sufficient Representation Learning
- URL: http://arxiv.org/abs/2504.01030v1
- Date: Sat, 29 Mar 2025 10:37:49 GMT
- Title: Fair Sufficient Representation Learning
- Authors: Xueyu Zhou, Chun Yin IP, Jian Huang,
- Abstract summary: We introduce a Fair Sufficient Representation Learning (FSRL) method that balances sufficiency and fairness.<n>FSRL is based on a convex combination of an objective function for learning a sufficient representation and an objective function that ensures fairness.<n>Our approach manages fairness and sufficiency at the representation level, offering a novel perspective on fair representation learning.
- Score: 2.308168896770315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The main objective of fair statistical modeling and machine learning is to minimize or eliminate biases that may arise from the data or the model itself, ensuring that predictions and decisions are not unjustly influenced by sensitive attributes such as race, gender, age, or other protected characteristics. In this paper, we introduce a Fair Sufficient Representation Learning (FSRL) method that balances sufficiency and fairness. Sufficiency ensures that the representation should capture all necessary information about the target variables, while fairness requires that the learned representation remains independent of sensitive attributes. FSRL is based on a convex combination of an objective function for learning a sufficient representation and an objective function that ensures fairness. Our approach manages fairness and sufficiency at the representation level, offering a novel perspective on fair representation learning. We implement this method using distance covariance, which is effective for characterizing independence between random variables. We establish the convergence properties of the learned representations. Experiments conducted on healthcase and text datasets with diverse structures demonstrate that FSRL achieves a superior trade-off between fairness and accuracy compared to existing approaches.
Related papers
- Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks [8.616743904155419]
We propose a framework that integrates sufficient dimension reduction with deep learning to construct fair and informative representations.
By introducing a novel penalty term during fine-tuning, our method enforces conditional independence between sensitive attributes and learned representations.
Our approach achieves a superior balance between fairness and utility, significantly outperforming state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-08T22:24:22Z) - Targeted Learning for Data Fairness [52.59573714151884]
We expand fairness inference by evaluating fairness in the data generating process itself.<n>We derive estimators demographic parity, equal opportunity, and conditional mutual information.<n>To validate our approach, we perform several simulations and apply our estimators to real data.
arXiv Detail & Related papers (2025-02-06T18:51:28Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - SoFaiR: Single Shot Fair Representation Learning [24.305894478899948]
SoFaiR is a single shot fair representation learning method that generates with one trained model many points on the fairness-information plane.
We find on three datasets that SoFaiR achieves similar fairness-information trade-offs as its multi-shot counterparts.
arXiv Detail & Related papers (2022-04-26T19:31:30Z) - Adversarial Stacked Auto-Encoders for Fair Representation Learning [1.061960673667643]
We propose a new fair representation learning approach that leverages different levels of representation of data to tighten the fairness bounds of the learned representation.
Our results show that stacking different auto-encoders and enforcing fairness at different latent spaces result in an improvement of fairness compared to other existing approaches.
arXiv Detail & Related papers (2021-07-27T13:49:18Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
arXiv Detail & Related papers (2020-08-30T09:06:03Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.